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• A brief recap on geometry


• Image processing



Description:

• Street scene

• Bar

• Chairs

• People drinking coffee

• Ashtray, etc.

What?



Why?
Fake

Authentic

NAO (Aldebaran Robotics)
(Mairal, Bach, Ponce, PAMI’12)



Why?

CMU’s 

Chimp

(Dessales et al.’15)

Facebook’s Moments



Images are brightness/color patterns drawn in a plane.

They are formed by the projection of

three-dimensional objects.





   Camera Obscura in 
Edinburgh 

Pinhole camera: trade-off between 
sharpness and light transmission

Source: S. Lazebnik 



Advantages of lens systems

E=(Π/4) [ (d/z’)2 cos4α ] L

Lenses

• can focus sharply on close and distant objects

• transmit more light than a pinhole camera



Fundamental problem 
 3D world is “flattened” to 2D images

Loss of information

3D scene

LensImage

Source: S. Lazebnik 



Christian Georg Theodor Ruete

A (naïve) detour through human perception: 

Seeing with two eyes

Dominant eye vs

Cyclopean vision

Source: J.J. Koenderink 



Seeing in depth:


The vergence angle reveals 

absolute range

Source: J.J. Koenderink 



Binocular stereo
Two images can be fused to give a 

sense of depth!

Stereograms: Invented by Charles Wheatstone, 1838



Triangulation

Figure from “US Navy Manual of Basic Optics and Optical Instruments”, 
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.



Triangulation

Figure from “US Navy Manual of Basic Optics and Optical Instruments”, 
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.



Why movies look “flat” on TV

Figure from “US Navy Manual of Basic Optics and Optical Instruments”, 
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.



Why movies look “flat” on TV

Figure from “US Navy Manual of Basic Optics and Optical Instruments”, 
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.



Triangulation for human eyes

Disparity:    d =  r-l =  D-F.

d=0

d<0

In 3D, the horopter.



Binocular fusion: A problem of correspondence



A third eye might come in handy



What is the mechanism behind human binocular 
fusion?How are the correspondences established?

Julesz (1971): Is the  mechanism for binocular fusion

a monocular process or a binocular one??

• There is anecdotal evidence for the latter (camouflage).


• Random dot stereograms provide an objective answer





The curious case of Elizabeth Stromeyer

NATURE VOL. 225 JANUARY 24 1970 

Excerpts:

We have found, quite by accident, an observer who can accurately report 
the figure seen in depth when the interval between the observations is 
as great as 24 h. The observer never guessed or hesitated in making 
reports, but immediately reported the figures and claimed the task was 
"ridiculously easy". 

Recently we have successfully carried out double-blind random-dot 
stereogram experiments with our observer; neither the experimenter 
nor the observer knew what the figures were. Patterns with ten-
thousand elements were used with intervals as long as 3 days; and million 
dot patterns with intervals as long as 4 h. 



The vergence angle reveals 

absolute range

But (Helmholtz 1860’s):


• There is evidence showing that 

   vergence angles cannot be 

   measured precisely.

 

• People get fooled by bas-relief 

   sculptures.


• Relative depth can be judged 

  accurately.

Back to depth perception:



Steropsis is spatial (3D) vision.

It is not limited to binocuar steropsis.

Of course the lamb “sees depth” too! Source: J.J. Koenderink 



“There is little doubt that we share awareness with (at 
least) the other vertebrates. They should be your friends, 
even if they eat you when hungry, and even if you eat them.”



And close one eye, for Pete’s sake. Does the world suddenly

look flat to you?

Source: J.J. Koenderink 



What happens if I 

turn the frame 30 

degrees  in depth?

Let us look into the

picture



Source: J.J. Koenderink 



«This particular picture may lead us to believe that mere silhouettes can convey

a great deal of information about three-dimensional objects. The artist’s carefully

chosen viewpoint and our familiarity with the subject matter conspire to give us

this impression. Silhouettes of unfamiliar objects, taken from randomly chosen

viewpoints, are typically quite difficult to interpret. » (Horn, Robot vision, 1986)

Source: B.P.K. Horn 



What does the occluding contour tell us about shape?

Nothing (Marr’77) ?

Or rather quite a bit

(Koenderink’84) ?

Where do the concave 

points project?



Van Dyck’s portrait of Charles I (detail)

Probing shape perception from pictures with gauge figures

Source: J.J. Koenderink 



Van Dyck’s triple portrait of Charles I 

with a copy of Bernini’s bust and an

engraving by von Voerst of the bust



PMVS (Furukawa & Ponce, 2007)



What is happening with the shadows?



Source: J.J. Koenderink
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Specific object detection

(Lowe, 2004)



Image classification

Caltech 101 : http://www.vision.caltech.edu/Image_Datasets/Caltech101/



Vi
ew

 v
ar

ia
ti

on

Within-class variation

Light variation
Partial visibility

Object category detection



Example: part-based models

Qualitative experiments on Pascal VOC’07 (Kushal, Schmid, Ponce, 2008)



Scene understanding

Photo courtesy A. Efros.



Computer vision books
•  D.A. Forsyth and J. Ponce, “Computer Vision: A Modern  

Approach”, Prentice-Hall/Pearson, 2nd edition, 2011.


• J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, “Toward 
category-level object recognition”, Springer LNCS, 2007.


• R. Szeliski, “Computer Vision: Algorithms and Applications”, 
Springer, 2010.


• O. Faugeras, Q.T. Luong, and T. Papadopoulo, “Geometry of 
Multiple Images,” MIT Press, 2001.


• R. Hartley and A. Zisserman, “Multiple View Geometry in 
Computer Vision”, Cambridge University Press, 2004.


• J.J. Koenderink, “Solid Shape”, MIT Press, 1990, and http://
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Variability: Camera position

Illumination

Internal parameters
Within-class variations



Variability: Camera position

Illumination

Internal parameters

θ

Roberts (1963); Lowe (1987); Faugeras & Hebert (1986); Grimson & 

Lozano-Perez (1986); Huttenlocher & Ullman (1987)



Origins of computer vision

L. G. Roberts, Machine Perception 
of Three Dimensional Solids, 
Ph.D. thesis, MIT Department of 
Electrical Engineering, 1963. 

photo  credit: Joe Mundy



Huttenlocher & Ullman (1987)



Variability      Invariance to: Camera position

Illumination

Internal parameters

Duda & Hart ( 1972); Weiss (1987); Mundy et al. (1992-94);

Rothwell et al. (1992); Burns et al. (1993)



BUT: True 3D objects do not admit monocular 

viewpoint invariants (Burns et al., 1993) !!

Projective invariants (Rothwell et al., 1992):

Example: affine invariants of coplanar points



Empirical models of image variability:

Appearance-based techniques

Turk & Pentland (1991); Murase & Nayar (1995); etc.



Eigenfaces (Turk & Pentland, 1991)



Appearance manifolds

(Murase & Nayar, 1995)



Correlation-based template matching (60s)


Ballard & Brown (1980, Fig. 3.3). Courtesy Bob Fisher

and Ballard & Brown on-line.

• Automated target recognition

• Industrial inspection

• Optical character recognition

• Stereo matching

• Pattern recognition



Lowe’02

Mahamud & Hebert’03

In the late 1990s, a new approach emerges: 

Combining local appearance, spatial constraints, invariants, 

and classification techniques from machine learning.

Query

Retrieved (10o off)

Schmid & Mohr’97



Late 1990s: Local appearance models

(Image courtesy of C. Schmid)



(Image courtesy of C. Schmid)

• Find features (interest points).

Late 1990s: Local appearance models



(Image courtesy of C. Schmid)

• Find features (interest points).

• Match them using local invariant descriptors (jets, SIFT).

(Lowe 2004)

Late 1990s: Local appearance models



(Image courtesy of C. Schmid)

• Find features (interest points).

• Match them using local invariant descriptors (jets, SIFT).

• Optional: Filter out outliers using geometric consistency.

Late 1990s: Local appearance models



(Image courtesy of C. Schmid)

• Find features (interest points).

• Match them using local invariant descriptors (jets, SIFT).

• Optional: Filter out outliers using geometric consistency.

• Vote.
See, for example, Schmid & Mohr (1996); Lowe (1999);Tuytelaars & Van Gool, 

(2002); Rothganger et al. (2003); Ferrari et al., (2004).

Late 1990s: Local appearance models



Image retrieval in videos

Bags of words: 

Visual “Google” 


(Sivic & Zisserman, ICCV’03)

“Visual word” clusters

Vector quantization into histogram

(the “bag of words”)



Bags of words: 

Visual “Google” 


(Sivic & Zisserman, ICCV’03)
Retrieved shots

Select a region



Image categorization is harder


 



Structural part-based models
(Binford, 1971; Marr & Nishihara, 1978)

(Nevatia & Binford, 1972)



Zhu and Yuille (1996)

Ponce et al. (1989)

Ioffe and Forsyth (2000)

Helas, this is hard to operationalize



Ultimate GCs: ACRONYM

(Brooks & Binford, 1981)



Labelled training examples

Beavers
Chairs

Trees

Test image

??

Categorization as supervised classification



Image “space” Feature (Hilbert) space

Φ

n Prediction functionLabel

Training datum

Image categorization as 

supervised classification



Image categorization as 

supervised classification

Image “space” Feature (Hilbert) space

Φ

n affine



Spatial pyramids

(Swain & Ballard’91, Grauman & Darrell’05, Zhang et al.’06, Felzenszwalb’08)

(Koenderink & Van Doorn’99;  Dalal

& Triggs’05; Lazebnik, Schmid, 

Ponce’06; Chum & Zisserman’07)

(Koenderink & van Doorn’99) (Lazebnik, Schmid, Ponce’06)

BoW (Csurka et al.’04) HOG (Dalal & Triggs’05)

• Bags of words=orderless models=histograms of visual words

• Spatial pyramids=locally orderless models

• Classifier: support vector machine=a linear classifier



(Felzenszwalb, Girshick, McAllester, Ramanan’08)

Discriminatively trained part-based models



The “revolution” of deep learning in 2012

(Krizhevsky, Sutskever, Hinton, 2012)

(And ResNets, GANs, RNNs, LSTMs, etc. [Schmidhuber’14, LeCun et al.’15])

Take with a 

grain of salt



The “revolution” of deep learning in 2012

(Krizhevsky, Sutskever, Hinton, 2012)

(And ResNets, GANs, RNNs, LSTMs, etc. [Schmidhuber’14, LeCun et al.’15])

Convolutional nets early 90s  (LeCun et al.’98)

(And one should not forget Pomerleau 1980s.)



Image categorization as 

supervised classification

Image “space” Feature (Hilbert) space

Φ

n θ
θ



SIFT at keypoints dense gradients dense SIFT

vector quantization vector quantization sparse coding

whole image, mean coarse grid, mean spatial pyramid, max

Filtering

Coding

Pooling

A common architecture for image 
classification

(Lowe’04, Csurka et al.’04, Dalal & Triggs’05)

(Yang et al.’09-10, Boureau et al.’10, Mallat’11)



dense gradients dense gradients

vector quantization vector quantization

coarse grid, mean coarse grid, mean

A common architecture for image 
classification

(Lowe’04, Csurka et al.’04, Dalal & Triggs’05)

(Yang et al.’09-10, Boureau et al.’10, Mallat’11)

HOG

SIFT



A common architecture for image 
classification

(Deep learning: Krizhevsky, Sutskever, Hinton, 2012)



Beyond pattern recognition

(Sivic & AZ, 2003) (Dalal & Triggs’05) (Lazebnik et al.’06)

(Boureau et al, CVPR.’10)

Deep learning

(LeCun et al.’98)

CNNs (Krizhevsky et al.’12)

(Kushal et al., CVPR’07)

Graph transformer

networks

Didn’t work so well

but the problem is

important!



Supervision: Where do the labels come from?
• A trend toward manually annotating the whole 

    wide world with crowd sourcing


• Example: MS COCO (Lin et al., 2015) :328K images 

    of 91 object categories

Scaling up: Little or no supervision
(Russell et al., 2008; Deng et al., 2009; Everingham et al., 2010; Xiao et al., 2010)



As the headwaiter takes them to a 
table they pass by the piano, and  
the woman looks at Sam. Sam, 
with a conscious effort, keeps his 
eyes on the keyboard as they go 
past. The headwaiter seats Ilsa...



Dictionary Script metadata a Alignment m

Action labeling under ordering constraints

(Bojanowski et al., ECCV’14, CVPR’15)



Temporal action localization

(Bojanowski et al., CVPR’15)
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Feature-based alignment outline



Feature-based alignment outline

Extract features



Feature-based alignment outline

Extract features

Compute putative matches



Feature-based alignment outline

Extract features

Compute putative matches

Loop:


• Hypothesize transformation T (small group of putative 
matches that are related by T)



Feature-based alignment outline

Extract features

Compute putative matches

Loop:


• Hypothesize transformation T (small group of putative 
matches that are related by T)


• Verify transformation (search for other matches consistent 
with T)



Feature-based alignment outline

Extract features

Compute putative matches

Loop:


• Hypothesize transformation T (small group of putative 
matches that are related by T)


• Verify transformation (search for other matches consistent 
with T)



Pinhole perspective equation

NOTE: z is always negative..



Affine models: Weak perspective projection

is the magnification.

When the scene relief is small compared its distance from the

camera, m can be taken constant: weak perspective projection.



Affine models: Weak perspective projection

When the scene relief is small compared its distance from the

camera, m can be taken constant: weak perspective projection.



Affine models: Orthographic projection

When the camera is at a

(roughly constant) distance

from the scene, take m=1.



Analytical camera geometry



The intrinsic parameters of a camera

Normalized image

coordinates

Physical image coordinates 

Units:
k,l : pixel/m
f  : m
α,β : pixel



The intrinsic parameters of a camera

Calibration matrix

The perspective

projection equation

Homogeneous coordinates



The extrinsic parameters of a camera



2D transformation models

Similarity 
(translation,  
scale, rotation) 
 

Affine transformation 
 

Projective transformation 
(homography) 

Why these transformations ???



Weak-perspective projection model

r

(p and P are in homogeneous coordinates)

p = A P + b (neither p nor P is in hom. coordinates)

p = M P (P is in homogeneous coordinates)



Affine projections induce affine 

transformations from planes 

onto their images.



Affine transformations
An affine transformation maps a parallelogram onto

another parallelogram



Fitting an affine transformation
Assume we know the correspondences, how do we get 

the transformation?



Fitting an affine transformation

Linear system with six unknowns

Each match gives us two linearly independent equations: 

need at least three to solve for the transformation 
parameters



Beyond affine transformations
What is the transformation between two views of a 

planar surface? 
 
 
 
 
 

What is the transformation between images from two 
cameras that share the same center?



Perspective projections induce projective 

transformations between planes



Beyond affine transformations
Homography: plane projective transformation 

(transformation taking a quad to another arbitrary 
quad)



Fitting a homography
Recall: homogenenous coordinates

Converting to homogenenous 
image coordinates

Converting from homogenenous 
image coordinates



Fitting a homography
Recall: homogenenous coordinates 

 
 
 
 
 
 

Equation for homography:

Converting to homogenenous 
image coordinates

Converting from homogenenous 
image coordinates



Fitting a homography
Equation for homography:

3 equations, only 2 linearly  
independent

9 entries, 8 degrees of freedom 
(scale is arbitrary)



Direct linear transform

H has 8 degrees of freedom (9 parameters, but scale is 
arbitrary)


One match gives us two linearly independent equations

Four matches needed for a minimal solution (null space 

of 8x9 matrix)

More than four: homogeneous least squares



Application: Panorama stitching

Images courtesy of A. Zisserman. 
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Photography: Deblurring

sharp images!

(Eboli, Sun, Ponce, 2021)

Key idea: combine physical model of image formation, classical solutions of 

inverse problems, and learned image priors



Image restoration and why



For example, smartphone cameras are great, but.. 

Blurry when zooming 


Poor dynamic range 
 Noisy in low light 


4.3 mm2

Small aperture and sensor

1900 

mm2



Why machine learning for image restoration?

Reasonable physical models of image corruption


	 - For example: y=A(x)+ε


	 - For example: A(x) = k   x


➢ One can use prior knowldege


	 - For example: sparsity, self similarities


➢ Realistic simulated training examples


➢ Interpretable, “functional” architectures

*



Reasonable physical models of image corruption


	 - For example: y=A(x)+ε


	 - For example: A(x) = k   x


➢ One can use prior knowldege


	 - For example: sparsity, self similarities


➢ Realistic simulated training examples


➢ Interpretable, “functional” architectures

*

Why machine learning for image restoration?



Reasonable physical models of image corruption


	 - For example: y=A(x)+ε


	 - For example: A(x) = k   x


➢ One can use prior knowldege


	 - For example: sparsity, self similarities


➢ Realistic simulated training examples


➢ Interpretable, “functional” architectures

*
But where does the real

ground truth come from,

whether for model-based

or data-driven methods?

Why machine learning for image restoration?



Lumix GX9

(Small crop of) Burst of raw pictures (Lecouat et al., ICCV’21)

Super-resolution from raw image bursts

Real images, x 4, 12,800 to 25,600 ISO



Image interpolation (aka “single-image super-resolution”)

(Dahl et al., 2017)



Image interpolation (aka “single-image super-resolution”)

(PULSE, Menon et al., 2020)



…

…



Super-resolution with “hallucination/recogstruction”

(Baker and Kanade, 2002)

, alignment

known exactly
× 4

• LR input image (1 of 4)

• Recogstruction

• Ground-truth HR image


• (Hardie et al., 1997)

• Bicubic interpolation



True (multi-frame) super-resolution

(Irani & Peleg, 1991)

(Wronski et al., 2019)



??

An image interpolation algorithm guaranteed to yield

a 100% realistic image 



True (multi-frame) super-resolution

(x16 super-resolution on synthetic data)



1 LR RGB image 1 HR RGB image

20 LR raw images = burst

1 HR RGB image

Single-image

interpolation

Super-resolution



Helps with demosaicking.. (Wronski et al., 2019)

..and denoising too (a la Buades et al., 2005)



Comment ça marche !

•   for  with  


• Define  || || 


• Minimize wrt  the objective   ||  ||

𝑦𝑘 = 𝑈𝑘 𝑥 + 𝜀𝑘 𝑘 = 1,…,  𝐾  𝑈𝑝𝑘
= 𝐷𝐵𝑊𝑝𝑘

𝑥𝜃(𝑦) = argmin𝑥,𝑝 
1
2

𝑦 − 𝑈𝑝 𝑥     +  𝜆𝜑𝜃(𝑥)

𝜃
1
𝑛 ∑

1≤𝑖≤𝑛

  𝑥𝑖  − 𝑥𝜃(𝑦𝑖)

2

1

Physical

model
Learned

prior



min
𝐱,𝐩

min
𝐱,𝐩,𝐳

Optimization: unrolled iterative algorithm

Increment 𝜇

➢  

➢  

➢  

➢  

Quadratic penalty (aka HQS) method 

(three iterations)

Proximal update

One step of gradient descent (or a few)

Gauss-Newton (aka Lucas-Kanade)

K. Gregor, Y. LeCun, “Learning fast approximations of sparse coding”, ICML’10



min
𝐱,𝐩

min
𝐱,𝐩,𝐳

Increment 𝜇

➢  

➢  

➢  

➢  

Quadratic penalty (aka HQS) method 

(three iterations)

Proximal update

One step of gradient descent (or a few)

Gauss-Newton (aka Lucas-Kanade)(3 times)

Optimization: unrolled iterative algorithm

K. Gregor, Y. LeCun, “Learning fast approximations of sparse coding”, ICML’10



min
𝐱,𝐩

min
𝐱,𝐩,𝐳

Increment 𝜇

➢  

➢  

➢  

➢  

One step of gradient descent (or a few)

Plug-and-play approach

(small residual U-net)

𝐱𝑡 ← 𝑓𝜃(𝐳𝑡)

Quadratic penalty (aka HQS) method 

(three iterations)

Gauss-Newton (aka Lucas-Kanade)(3 times)

Optimization: unrolled iterative algorithm

K. Gregor, Y. LeCun, “Learning fast approximations of sparse coding”, ICML’10



Raw image burst (Lumix GX9) High-quality picture

Example



Lumix GX9

(Small crop of) Burst of raw pictures (Lecouat et al., ICCV’21)







High-Dynamic Range and Night Imaging (Lecouat et al., SIGGRAPH’22)









