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Reconnaissance d'objets

et vision artificielle
https://imagine.enpc.fr/~varolg/teaching/recvis23/

Giil Varol (gul.varol@enpc.fr)
% and

: Jean Ponce, Armand Joulin, Josef
_ .- Sivic, Ivan Laptev, Cordelia Schmid,
| K ﬁ and Mathieu Aubry
Mardis 16 h00-19h0, salle Dussane
Planches disponibles apres les cours




Nous cherchons
toujours
des stagiaires
d la fin du semestre



Tnitiation a la
vision artificielle

Jean Ponce
(jean.ponce@ens.fr)
Mardis, salle E. Noether, ENS, 9h-12h

Il y a d'autres choses que la reconnaissance
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Outline

* What computer vision is about

* What this class is about

- A brief history of visual recognition
* A brief recap on geometry

* Image processing



Description:

* Street scene
* Bar

* Chairs

People drinking coffee
Ach+rav o+,




Authentic

NAO (Aldebaran Robotics) S
(Mairal, Bach, Ponce, PAMI'12)






Images are brightness/color patterns drawn in a plane.
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Pinhole camera: trade-off between
sharpness and light transmission

B. Large Aperture without Lens --> Fuzzy Image

Camera Obscura in
Source: S. Lazebnik Edlnbur'gh



Advantages of lens systems

Lenses
» can focus sharply on close and distant objects
* transmit more light than a pinhole camera

E=(11/4) [ (d/z’)? cos*a. | L



Fundamental problem
3D world is "flattened” to 2D images
=> Loss of information

3D scene

Image Lens

@@

B. Necker Cube

Source: S. Lazebnik



A (naive) detour through human perception:
Seeing with two eyes

- Dominant eye vs
Christian Georg Theodor Ruete Cyclopean vision

Source: J.J. Koenderink



Seeing in depth:

The vergence angle reveals
absolute range

Source: J.J. Koenderink



Binocular stereo

Two images can be fused to give a

sense of depthl

Stereograms: Invented by Charles Wheatstone, 1838



Triangulation
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Figure from "US Navy Manual of Basic Optics and Optical Instruments”,
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.



Triangulation
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Figure from "US Navy Manual of Basic Optics and Optical Instruments”,
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.



Why movies look "flat" on TV
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Figure from "US Navy Manual of Basic Optics and Optical Instruments”,
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.



Why movies look "flat" on TV
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Figure from "US Navy Manual of Basic Optics and Optical Instruments”,
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.



Triangulation for human eyes

Vieth-Muller Circle
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Disparate dot

Disparity: d= r-I= D-F.
d<0

In 3D, the horopter.



Binocular fusion: A problem of correspondence
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What is the mechanism behind human binocular
fUSiQn%’re the correspondences established?

Julesz (1971): Is the mechanism for binocular fusion
a monocular process or a binocular one??
* There is anecdotal evidence for the latter (camouflage).

* Random dot stereograms provide an objective answer
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The curious case of Elizabeth Stromeyer

The Detailed Texture of Eidetic Images

by

C. F. STROMEYER I
Ceparument of Psychology,

Massachusetts Institute of Technology, and
Laboratory of Psychophysics, Randem dot stereograms are used to test the clarity and duration
Harvard University of cidetic images

1. PSOTKA

Department ¢f Psychclogy,
Harvard University,

Cambridge. Massachusetss NATURE VOL 225 JANUARY 24 1970

Excerpts:

We have found, quite by accident, an observer who can accurately report
the figure seen in depth when the interval between the observations is
as great as 24 h. The observer never guessed or hesitated in making
reports, but immediately reported the figures and claimed the task was
"ridiculously easy".

Recently we have successfully carried out double-blind random-dot
stereogram experiments with our observer; neither the experimenter
nor the observer knew what the figures were. Patterns with ten-
thousand elements were used with intervals as long as 3 days; and million

| T Y LI | L Y P Y I |



Back to depth perception:

The vergence angle reveals
absolute range

But (Helmholtz 1860's):
* There is evidence showing that

vergence angles cannot be
measured precisely.

* People get fooled by bas-relief
sculptures.

* Relative depth can be judged

Py - ll“*‘l‘ a



Steropsis is spatial (3D) vision.
It is not limited to binocuar steropsis.
Of course the lamb "sees depth” tool Source: J.J. Koenderink




"There is little doubt that we share awareness with (at
least) the other vertebrates. They should be your friends,
even if they eat you when hungry, and even if you eat them.”




And close one eye, for Pete's sake. Does the world suddenly
look flat to you?

Source: J.J. Koenderink



Let us look into the
picture

What happens if I
turn the frame 30
degrees in depth?




Source: J.J. Koenderink
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Source: B.P.K. Horn

«This particular picture may lead us to believe that mere silhouettes can convey
a great deal of information about three-dimensional objects. The artist's carefully
chosen viewpoint and our familiarity with the subject matter conspire to give us

this impression. Silhouettes of unfamiliar objects, taken from randomly chosen
viewbointe are tvnicallv auite difficult to interoret » (Horn Robot vicion 198A)



What does the occluding contour tell us about shape?

Nothing (Marr'77) ?

Where do the concave
points project?



Probing shape perception from pictures with gauge figures

VCln DYCk'S pOf‘Tr‘C(I'I' Of Charles I (deTa”) Source: J.J. Koenderink



Van Dyck's triple portrait of Charles I
with a copy of Bernini's bust and an
engraving by von Voerst of the bust



Ponce, 2007)
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Wha’r IS happenmg quh the shadows?

A L) LA N



http://go. funpic.hu

Source: J.J. Koenderink



Outline

* What computer vision is about

* What this class is about

- A brief history of visual recognition
- A brief recap on geometry

* Image processing



Specific object detection

(Lowe, 2004)



Image ClGSSIfICGTIOh

Caltech 101 : http://www.vision.caltech.edu/Image_Datasets/Caltech101/



Object category detection




Example: part-based models
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Qualitative experiments on Pascal VOC'07 (Kushal, Schmid, Ponce, 2008)
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Computer vision books

D.A. Forsyth and J. Ponce, "Computer Vision: A Modern
Approach”, Prentice-Hall/Pearson, 2nd edition, 2011.

J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, "Toward
category-level object recognition”, Springer LNCS, 2007.
R. Szeliski, "Computer Vision: Algorithms and Applications”,
Springer, 2010.

O. Faugeras, Q.T. Luong, and T. Papadopoulo, "Geometry of
Multiple Images,” MIT Press, 2001.

R. Hartley and A. Zisserman, "Multiple View Geometry in
Computer Vision”, Cambridge University Press, 2004.
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Outline

* What computer vision is about

* What this class is about

» A brief history of visual recognition
- A brief recap on geometry

* Image processing



Variability:  Camera position
Illumination

Internal parameters
‘ Within-class variations



Variability: | Camera position
Illumination
Internal parameters

Roberts (1963); Lowe (1987); Faugeras & Hebert (1986); Grimson &
Lozano-Perez (1986); Huttenlocher & Ullman (1987)




Origins of computer vision

L. G. Roberts, Machine Perception
of Three Dimensional Solids,
Ph.D. thesis, MIT Department of
Electrical Engineering, 1963.

photo credit: Joe Mundy



Huttenlocher & Ullman (1987)




Varisoility  Invariance to: |Camera position
Illumination
Internal parameters

Duda & Hart ( 1972); Weiss (1987); Mundy et al. (1992-94);
Rothwell et al. (1992); Burns et al. (1993)



Example: affine invariants of coplanar points

BUT: True 3D objects do not admit monocular
viewpoint invariants (Burns et al., 1993) |l



Empirical models of image variability:

Appearance-based techniques

Turk & Pentland (1991); Murase & Nayar (1995); efc.



Eigenfaces (Turk & Pentland, 1991)

Forced 20% unknown rate







Correlation-based template matching (60s)

Template

Industrial Image

Ballard & Brown (1980, Fig. 3.3). Courtesy Bob Fisher
and Ballard & Brown on-line.

» Automated target recognition
* Industrial inspection

» Optical character recognition
» Stereo matching

U D P T I de y - A



In the late 1990s, a new approach emerges:
Combining local appearance, spatial constraints, invariants,
and classification techniques from machine learning.

4 -“
Schmid & Mohr’97




Late 1990s: Local appearance models




Late 1990s: Local appearance models

* Find features (interest points).



Late 1990s: Local appearance models

(Ima‘ge coJr;’resy of C. Schmid) (Lowe 2004)
* Find features (interest points).
* Match them using local invariant descriptors (jets, SIFT).



Late 1990s: Local appearance models

* Find features (interest points).
* Match them using local invariant descriptors (jets, SIFT).
 Optional: Filter out outliers using geometric consistency.



Late 1990s: Local appearance models

' .

(Image courtesy of C. Schmid)
Find features (interest points).

Match them using local invariant descriptors (jets, SIFT).
Optional: Filter out outliers using geometric consistency.

* Vote.
See, for example, Schmid & Mohr (1996); Lowe (1999); Tuytelaars & Van Gool,
(2002); Rothganger et al. (2003); Ferrari et al., (2004).

il



"Visual word"” clusters

Bags of words:

Visual "Google”
(Sivic & Zisserman, ICCV'03)

Image retrieval in videos

Vector quantization into histogram
(the "bag of words")




Bags of words:

° 11) n
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Image categorization is harder




Structural part-based models
(Binford, 1971; Marr & Nishihara, 1978)

(Nevatia & Binford, 1972)



Helas, this is hard to operationalize

(L __I1 |

Ponce et al. (1989)

Toffe and Forsyth (2000)

Zhu and Yuille (1996)



Ultimate GCs: ACRONYM

(Brooks & Binford, 1981)



Categorization as supervised classification
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Image categorization as
supervised classification
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Image "space” Feature (Hilbert) space

l/Tmining datum

(Z0. f(o(n))) +Q(f)

Prediction function



Image categorization as
supervised classification
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Image "space” Feature (Hilbert) space




Spatial pyramids

BoW (Csurka et al.'04) HOG (Dalal & Triggs'05)

(Koenderink & van Doorn'99) (Lzebni'k, chid, oc'06)

* Bags of words=orderless models=histograms of visual words
* Spatial pyramids=locally orderless models

* Classifier: support vector machine=a linear classifier
(Swain & Ballard'91, Grauman & Darrell'05, Zhang et al.'06, Felzenszwalb'08)
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Discriminatively trained part-based models
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(Felzenszwalb, Girshick, McAllester, Ramanan'O8)



The "revolution” of deep Iearning in 2012
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Take with a
grain of salt
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2010 2Mm 2012 2013 2014 Human ArXiv 2015

(And ResNets, GANs, RNNs, LSTMs, etc. [Schmidhuber'14, LeCun et al.'15])



The "revolution” of deep Iearning in 2012
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Convolutional nets early 90s (LeCun et al.'98)
(And one should not forget Pomerleau 1980s.)
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(And ResNets, GANs, RNNs, LSTMs, etc. [Schmidhuber'14, LeCun et al.'15])



Image categorization as
supervised classification
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Image "space” Feature (Hilbert) space




A common architecture for image
classification

FiITer'ing\l, ‘1' sl:
‘ SIFT at keypoints ‘ ‘ dense gradients ‘ ‘ dense SIFT ‘
Coding ‘1' ‘1’ ‘1'
‘vec’ror' quan’riza’rion‘ ‘vec’ror' quan’riza’rion‘ ‘ sparse coding ‘
Pooling ‘1’ ‘1’ ‘1’
whole image, mean | | coarse grid, mean IspaTial pyramid, ma>l
v v v

(Lowe'0O4, Csurka et al.'04, Dalal & Triggs'05)
(Yang et al.'09-10, Boureau et al.'10, Mallat'11)



A common architecture for image

classification

v

dense gradients

v

v

vector quantization

v

coarse grid, mean

=
h

dense gradients

v

vector quantization

v

l SIFT ‘1’

HOG

coarse grid, mean

v

(Lowe'O4, Csurka et al.' 04, Dalal & Triggs'05)
(Yang et al.'09-10, Boureau et al.'10, Mallat'11)




A common architecture for image
classification

pocling “

(Deep learning: Krizhevsky, Sutskever, Hinton, 2012)



Beyond pattern recognition Graph transformer

Fitering (Boureau et al, CVPR.'10) networks

‘ Vitarbl Penalty
SIFT at keypoints [ | dense gradients | |  dense SFT

Coding

~\

vactor quant zation vector quantization sparse coding , .,/ \\ - \Tarhs
: . G, ’ J Path
Pooling Deep |ear'nm9 » 8 o/jb\')*/\‘
W i f - i | i i | ] “
. whole image, mean| | coarse grid mean | spatial pyramid, max| (LQCUH et al. 98) e
v frersicemer
(Sivic & AZ, 2003) (Dalal & Triggs'05) (Lazebnik et al.'06)

Inkerpretabion

IR

‘ L | 2 Sogmer @0
4" b — m e .--'-J :: - I sranh
Foute CNNs (Krizhevsky et al.'12) Wy

M by )

Didn't work so well
but the problem is
important!




Supervision: Where do the labels come from?

* A frend toward manually annotating the whole
wide world with crowd sourcing

am pl MS COCO (Lin et al., 2015) :328K images

i =
of 910 Jec‘r categories

Scaling up: Little or no supervision

(Russell et al., 2008; Deng et al., 2009; Everingham et al., 2010; Xiao et al., 2010)



As the headwaiter takes them to a
table they pass by the piano, and
the woman looks at Sam. Sam,
with a conscious effort, keeps his
eyes on the keyboard as they go
past. The headwaiter seats Ilsa...




Action labeling under ordering constraints
(Bojanowski et al., ECCV'14, CVPR'15)

A

Sit Down
Open Door

Fat
Answer ’hone

Y

Dictionary  Script metadata a

min
feF




Temporal action localization

Clip number 0101

(Bojanowski et al., CVPR'15)



Outline

* What computer vision is about

* What this class is about

- A brief history of visual recognition
* A brief recap on geometry

* Image processing



Feature-based alignment outline




Feature-based alignment outline




Feature-based alignment outline
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Extract features
Compute putative matches

ré



Feature-based alignment outline

Compute putative matches
Loop:

* Hypothesize transformation T (small group of putative
matches that are related by T)



Feature-based alignment outline
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Compute putative matches
Loop:

* Hypothesize transformation T (small group of putative
matches that are related by T)

* Verify transformation (search for other matches consistent
with T)



Feature-based alignment outline
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Extract features
Compute putative matches
Loop:

* Hypothesize transformation T (small group of putative
matches that are related by T)

* Verify transformation (search for other matches consistent
with T)



Pinhole perspective equation

NOTE: z is always negative..




Affine models: Weak perspective projection

is the magnification.

When the scene relief is small compared its distance from the
camera, m can be taken constant: weak perspective projection.



Affine models: Weak perspective projection

When the scene relief is small compared its distance from the
camera, m can be taken constant: weak perspective projection.




Affine models: Orthographic projection

When the camera is at a
(roughly constant) distance
from the scene, take m=1.




Analytical camera geometry




The intrinsic parameters of a camera

Units:

k| pixel/m
fim

%P : pixel

Nomal zed
mage l!l:llk‘

Physical image coordinates

Normalized image
coordinates



The intrinsic parameters of a camera

Pinacle

" Nommal zed
mage plane

Phyzical
raina

Calibration matrix

The perspective
projection equation



The extrinsic parameters of a camera



2D transformation models

Similarity

(translation, - - . - [ ’

scale, rotation)

Affine transformation B - ’

Projective transformation N - -

(homography)

Why these transformations ???



Weak-perspective projection model

(p and P are in homogeneous coordinates)

\ p= M P (P is in homogeneous coordinates)

\ P — A P + b (neither p nor Pis in hom. coordinates)



Affine projections induce affine
transformations from planes
onto their images.

Projection
direction

Projection
direction




Affine transformations

An affine transformation maps a parallelogram onto
another parallelogram




Fitting an affine transformation

Assume we know the correspondences, how do we get
the transformation?




Fitting an affine transformation

Linear system with six unknowns

Each match gives us two linearly independent equations:
need at least three to solve for the transformation
parameters



Beyond affine transformations

What is the transformation between two views of a
planar surface?

22N AR oy 3 R
: : v v Aear <P
- "N " v - i . e - 8 o

What is the transformation between images from two
cameras that share the same center?




Perspective projections induce projective
transformations between planes

Avc
B

Scene plane

[mage




Beyond affine transformations

Homography: plane projective transformation
(transformation taking a quad to another arbitrary

quad)
- A




Fitting a homography

Recall: homogenenous coordinates

Converting fo homogenenous Converting from homogenenous
Image coordinates Image coordinates



Fitting a homography

Recall: homogenenous coordinates

Converting fo homogenenous Converting from homogenenous
Image coordinates Image coordinates

Equation for homography:



Fitting a homography

Equation for homography:

9 entries, 8 degrees of freedom
(scale is arbitrary)

3 equations, only 2 linearly
independent



Direct linear transform

H has 8 degrees of freedom (9 parameters, but scale is
arbitrary)

One match gives us two linearly independent equations

Four matches needed for a minimal solution (null space
of 8x9 matrix)

More than four: homogeneous least squares



Application: Panorama stitching

Images courtesy of A. Zisserman.
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* What computer vision is about
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For example, smartphone cameras are great, but..

Small aperture and sensor

5 -t =

T




Why machine learning for image restoration?

Reasonable physical models of image corruption
- For example: y=A(x)+¢
&
- For example: A(x) = k x
> One can use prior knowldege
- For example: sparsity, self similarities
> Realistic simulated training examples

> Interpretable, "functional” architectures



Why machine learning for image restoration?

physical models of image corruption
- For example: y=A(x)+¢
&
- For example: A(x) = k x
> One can use prior knowldege
- For example: sparsity, self similarities
simulated training examples

> Interpretable, "functional” architectures



Why machine learning for image restoration?

physical models of image corruption

- For example: y=A(x)+¢
But where does the real

ground truth come from,
whether for model-based

> One can use prior knowldege or data-driven methods?

%
- For example: A(x) = k x

- For example: sparsity, self similarities
simulated training examples

> Interpretable, "functional” architectures



Super-resolution from raw image bursts
Real images, x 4, 12,800 to 25,600 ISO

(Small crop of) Burst of raw pictures (Lecouat et al., ICCV'21)



Image interpolation (aka “single-image super-resolution”)

X x & 1nput 32 x 32 samples ground truth

(Dahl et al., 2017)



Image interpolation (aka "single-image super-resolution”)

BICUBIC(x8)

|
-

BICUBIC! .-.BD

BICUBIC{x8)

(PULSE, Menon et al., 2020)




Model Card - PULSE with StyleGAN FFHQ Generative Model Backbone

Intended Use

¢ PUISE was intended as a praot of concept for eme-to-many super-resalution (rencranng multiple mgh resolunon autputs
from 2 single image) using latent space exploranan.

¢ Intended use of implementaton usmp Style{rAN-FFHQ (faces) 1s purely as an art projeet - scemg fun pictures af /maginary
people that downscale approximately m a low-resolution image.

» Not suvitable for facial recognitionfidentificaion. PULSE makes imaginary faces of people who do not exist, which should
oot be confused for real people. It will not help identfy or reconstroct (e original linage.

e Demoonstrates that face recognition 15 nol possible from low resclution or Dlurcy images becuuse PULSE can produce visually
distinct high resoluton images that all downscale comrectly.

Caveats and Recommendations
FairTFace appears to be a better dataset to use than CelebA HQ for evaluntion purposes.
Due o lack of available compute, we could not at this time analyze intersectional identities end the associated biases.
For an in depth discussion of the biascs of SivlcGAN, sce [21].
Finally, again similarlv wa [17]:
1. Dacs not capiure race ar skin type, which has heen reported az a source of dispropornonate errors.

2. {iven gender classes are binary (malefnot male). which we mclude as male/female. Further work needed to evaluate
across a spectrurt of genders.
. An ideal evaluation dataset would additionally include annotations for Fitzpauick skin type. camera details, and envi-
ronment (Lghtinghumidity] details.
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(Baker and Kanade, 2002)

Super-resolution with “hallucination/recogstruction”

* LR input image (1 of 4)
* Recogstruction
* Ground-truth HR image

* (Hardie et al., 1997)
* Bicubic interpolation

x 4, alignment
known exactly



True (multi-frame) super-resolution

(Wronski et al., 2019)



An image interpolation algorithm guaranteed to yield
a 100% realistic image




True (multi-frame) super-resolution
. = y B Y

¥

v

(x16 super- r'esolu‘rlon on syn’rhe’rlc da’ra)




1 LR RGB image

20 LR raw images = burst

Single-image
interpolation

—

Super-resolution

—

1 HR RGB image




Helps with demosaicking.. (Wronski et al., 2019)

..and denoising too (a la Buades et al., 2005)



Comment ¢ca marche |

LR inpul image ¥y

z

Warped IR image Resample

W,

Py

Latent HR image x

. ‘yk= U.x+¢g, fork=1,..., K with U, = DBW,

. 1 2
. Define xg(y) = argmin o [y=U,x || + [A@y(x)

. . 1
Minimize wrt 6 the objective — Z | x; — x4() ||
n

1

image Blurred 1R image Decimated HR image

Physical
model

Learned
prior



Optimization: unrolled iterative algorithm

o1 a o,y
rgll)n 3 y — Up x||” + Adbg(x)

min £, (X, %, Pl = 5 y Ulpz * . X||.',' | Agig(x) Quadratic penalty (aka HQS) method
. (three iterations)

- ™ [l-",,lf 1 (Upe 1z y)i I"'(zr'-l x'! )] One step of gradient descent (or a few)

. ] o— - A y
min = yp — DBWy z"||°
P o

Gauss-Newton (aka Lucas-Kanade)

e 2\
x' 4~ arg min “—) 12 = x||? + Ao (x) Proximal update
x

-

Increment u

K. Gregor, Y. LeCun, "Learning fast approximations of sparse coding”, ICML'10



Optimization: unrolled iterative algorithm

o1 a o,y
rgll)n 3 y — Up x||” + Adbg(x)

) . : 1 o
min £, (X, %, p) = o ¥ Upz|™ 1 |2 x|l

? ) Agg(x ) Quadratic penalty (aka HQS) method
B (three iterations)

72, [l.fp'f (g 12 y) (X! )] One step of gradient descent (or a few)

P;: o t—(J ‘—J,c' J :.-T rj,. (3 times) Gauss-Newton (aka Lucas-Kanade)

e 2\
x' 4~ arg min “—) 12 = x||? + Ao (x) Proximal update
x

-

Increment u

K. Gregor, Y. LeCun, "Learning fast approximations of sparse coding”, ICML'10



Optimization: unrolled iterative algorithm

o1 a o,y
rgll)n 3 y — Up x||” + Adbg(x)

. [ S r ) — - ) ; .'. l" Ly
min K (X, %, p) = 9 Yy Upz|” | 9 Z

X,p,z

P

7 h [l.xp', (g iz

tT 1

P, — pit — (37357 I
x! « fo(z,)

Increment u

x||* 1 Agg(x)

y)+u(z - xt1)]

(3 times)

Quadratic penalty (aka HQS) method
(three iterations)

One step of gradient descent (or a few)

Gauss-Newton (aka Lucas-Kanade)

Plug-and-play approach
(small residual U-net)

K. Gregor, Y. LeCun, "Learning fast approximations of sparse coding”, ICML'10



Example

Raw image burst (Lumix GX9) High-quality picture
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(Small crop of) Burst of raw pictures (Lecouat et al., ICCV'21)
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HDR - x4 super-resolution

High-Dynamic Range and Night Imaging (Lecouat et al., SIGGRAPH22)
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