Introduction to Deep
_earning

Armand Joulin

What is deep learning?

—— O(%f — image label

—— O(%f — Bounding box

“person running in the street”

Uiannens

scene description) O(%f —l

FX) = S wiH(X) +b =3 wig(y/X) + b

J J

Dataset: (X,-, Y,-) pairs, i=1,...,N.
Goal: Find V and W to minimize

Z Uf(Xi),Yi) = Z U Wg(VX:),Y;)

Why do we need Deep Learning?

ChatGPT

Powering the revolution in knowledge accessibility

Insveavyeurioa,
emeprgenuc ceschil
in aspacehip

“Grandma knitted a portal to hell” “lkea instructions for fMRI machine”

How does Deep learning work?

Cover in this lecture

 Basic supervised deep learning
* Modeling and training

* Introduction to sequence modeling

Supervised deep learning

Supervised classification

e Supervision: Each input X has a fixed given output Y
® Classification: Y represents a class label

¢ Linear classifier: learn linear mapping between X and Y

Linear classifier

Dataset:
° (X,-, Y,-) pairs, i =1,..., N.
* X;eR", Y;e{-1,1}.
Goal:
® Find w and b such that
Vie{l,...,N}, sign(w'X; +b) =Y.

Classification loss

Perceptron algorithm

® wo=0,bp=0
° Y; =sign(w'X; + b)
® Wil < Wt

® biy1 < by

Doesn’t converge!

or g
L J

-1 0.8 -0.6 04 0.2 0 0.2 04 0.6 0.8 1

Purple: logistic regression

Properties: smooth and convex

(Perceptron) £(w) = Z Lsign(wT X+ b)£Y;

(Logistic regression) £(w) = Z loga((w' X; + b)Y;)

with o(x) = 1+e)}p —.

Gradient descent

L(0) = 1 30, %, V)

(87 oJ4 H,X,', Y,
Ory1 — 0 — Nt (By)

I

» Take step in direction of gradient to minimize loss
e Guarantee to converge to global minimum if loss is convex

Logistic regression with gradient descent

® wo=0,bgp=0

° Y,=0o(w'X,+b)

© weyr < wet 53, (Yo — Ya)Xn
© b1 b+ U (Yo— V)

where a; > 0 are “step sizes”

® 2-D example: X; = (xj1, Xi2)
® Features: xj1,xj2 — linear classifier

® [eatures: x,-1,x,-2,x,-1x,-2,x,-21, ... — non-linear classifier

non-linear classifier = linear classifier of non-linear features.

Which non-linear features?

H(X) = x{x3
H;i(X) = exp —A||X — X;||3 (rbf kernel)

Why not learn the non linear features too?

That is the goal of deep learning

® Usually H; = g(vaX)

¢ H;: Hidden unit
® v;: Input weight

® g: Transfer function

f(X) = Z w;H;(X) 4+ b= Z wig(v;' X) + b

® g is the transfer function.

sssssssssssss

Sigmoid Rectified linear Unit

® Transformations tend to be non-decreasing and differentiable

FX) = D_wiHi(X) +b =2 wig(y' X)+b

e Dataset: (Xj,Y;) pairs, i=1,...,N.
® Goal: Find V and W to minimize

Z (f(Xi), Yi) = Z ((We(VXi), Yi)

Training a neural network

Given a (X, Y) pair:
® Forward pass: apply network to X to produce an output Y
e Evaluation: Compute loss function, i.e., £(Y,Y)
® Backward pass: compute the gradient with backprogation
e Update: Take a step in the direction of the gradient

Backpropagation

Backpropagation — chain rule

® Goal: Find W to minimize:

® We need to compute the gradient of:
ti(W, V) = ((Wg(VX), ;)

® Chain rule:

BLi(W,V) 8L (W, V) df(X)
oW 9f(X) oW
(W, V)

T of(X)

g(vXx)'

Backpropagation — chain rule

® Goal: Find V to minimize:

e We will rewrite Wg(VX) = WH with H = g(VX).

® Chain rule:

(W, V) aLi(W, V) af(X)
ov. Of(X) oV
_A(W, V) df (X) OH
~ 9f(X) OH 8V
(W, V)
af(x) ¢

=W (VX)X

Backpropagation - memoization

gradient in V shares some elements with gradient in W:

8Li(W, V) dL(W, V)

oW af(X) g(VX)',

Same computation can be re-used

Backpropagation - memoization

forward

backward

Computing gradient from end to beginning = re-use partial computation
Optimal computation of gradient at the cost of memory

Can be generalized and automated along a DAG (autograd)

Backpropagation = chain rule + memoization

Impact of deeper network on gradients

Going deeper

Going deeper

Going deeper — vanishing gradient problem

Cm aam am

Norm of gradient flowing from output to input

Why?

* Non linearity puts gradientto O

* Matrix multipliciation with eigenvalues < 1

Sigmoid

Going deeper — vanishing gradient problem

sssssssssssss

Sigmoid Rectified linear Unit

Use non-linearity with less zero-region

Going deeper — vanishing gradient problem

Skip connection+normalization: [
® Given a network block nn and input x Y T
® The output y is computed as
y = norm(x + nn(x)) [
where norm normalize the input 4]

Optimization

Gradient descent

L(0) = 1 30, %, V)

Ot 86(67Xi7 \/I)

9t+1_>0t_ﬁ . By

I

* Require pass over entire dataset
» Dataset contains millions/billions examples

Stochastic gradient descent (SGD)

86(07 Xi7 K)

Ot

(Gradient descent) — fpp1 — 0 — — »

N 00

04(0, X i) |y (ic))
o0

(Stochastic gradient descent) 60;.1 — 0 — o

Stochastic gradient descent (SGD)

Xia Yi
(Gradient descent) Ori1 — Op — ot oL(0,)

N < 00

D0(6, X y(i)
00

(Stochastic gradient descent) 611 — 0 —

What are the pros and cons?

Stochastic gradient descent (SGD)

i.i.d. sampling + stochastic gradients = full gradient in expectancy (no bias)

* Pros:
* For one full gradient, time to do N updates with SGD -> N times faster
* works on infinite data or online

* Cons:
* introduces variance in gradients

Batch SGD

® Pick K random points instead of picking 1 (with K << N):

K
ar x— 040, X;,Y:)
Orr1 — 0 — —
K — 00

® K offers trade-off between variance but speed

L(0) = % S g0, XD, y)

066, X (i) |y (ir))

91‘-{—1 —>9t—at 90

® How to initialize the parameters?
® How to set learning rates a;?

® Can we do better than plain gradient descent?

Weight regularization

Why is it important?

* Many networks produce same results
* Examples: permutations of weights, invariant to multiplication...
* \We can reduce space of exploration to smaller set of networks

— Faster convergence

Weight regularization

3 complementary approaches:
* |nitialziation
* Normalization of activations
* Regularizing the weights

Initialization

® |f two units are equal, they stay equal
® Waste of capacity

® Random initialization breaks symmetry

Initialization

A

10

05

0.0 e e
-0.5

nnnnnnnnnnnnn

Sigmoid Rectified linear Unit
® Many nonlinearities have regions with 0 norm gradients
® [nitialization must avoid saturated areas

® Alernatively use nonlinearities with no saturation:

Leaky ReLU = ReLU(x) + ax, with a > 0.

Fan-in initialization

® Fan-in: number of inputs used to compute a hidden units
® Large fan-in implies larger changes in hidden variables

® Need smaller initialization
® Typically, weights ~ 1/+v/fan-in

Data normalization (whitening)

® Update of a layer is proportional to its input

® Example:
® Assume X; = 100 and X; = 101
® Vli =+1and Vi, = -1
® Mean of updates is small (ox —0.5) but each update is huge
(e 100)

® Center data is important!

® Centering is transforming x; into =%

1

Intermediate normalization

Normalize intermediate features to keep
values in range of non-linearities

e Different solutions:
e Batch normalization

e Layer normalization
* RSMnorm

Example: batch normalization

Xi— Wi
gj

® For the upper layers, u; and o; change over time

® Centering is transforming x; into

® \We shall learn them and update the parameters accordingly

Example: batch normalization

0i = BNo,5(h:)
1
B < 52:1}74

= Compute batch
b
1
o b > (hi — up)?
=1

statistics

o hi — uB . .

hi Normalize hidden h;
Vog te state

0; ah; + [Shift the normalized hidden

«a and [are learned over time.

* Normalization reduces space of
parameters to explore

e faster convergence

e Layer norm is prefered over batch norm

Weight decay

® Apply a Ly regularization on the parameters

® In our simple neural network, this is equivalent to:

D UWE(VX), Yi) + pell VI3 + pel W13
]

® 1+ > 0 decreases during training with the learning rate

® Different from standard regularizartion where > 0 is fixed.

Setting learning rate

J(w)

J(w)

v

Solution O: fixed learning rate

e Start with a large stepsize
® |f you diverge or oscillate, reduce it
® |f progress is slow but consistent, increase it

® Then keep it constant

Solution 1: linear decay

® Linear decay: a; = a/(b+t)
® Divide learning rate by a factor when loss on validation set
does not decrease

® Fix number of iterations T and set learning rate accordingly:
ar=ao(T —t)/T

Solution 2: cosine scheduler

» Same as linear linear decay with a cosine function: a: = o cos(t/Tpi/2)

* Last learning rate often equals to 0.1 of initial value

Beyond vanilla SGD

Not all direction are equal

Not all direction are equal

U=

We want to go fast in some directions, slow in others

Vectorized SGD: one step size per dimension

Scalar stepsize:

9t+1,i — et,i — 8t

Vector stepsize:

9t+1,i — Ht,i — Ot i 8t,i

Example: Adagrad

No need to set a learning rate schedule

Gt is the accumulation of the squared gradients
Squared norm avoids exploding or vanishing gradient
€ avoids numerical issues.

Use previous gradients

Previous gradient

Current gradient

Previous gradients are not bad estimates of current curvature

Example: momentum (or heavy ball)

My = yM;_1 + ng:
9t—|—1 — 9t — Mt

® ~ controls the inertia
® M; is almost a moving average
® Typically, v =0.9 or 0.99

Example: momentum (or heavy ball)

= &

Momentum + vectorized stepsize = ADAM

M; ; = 1 _15t (BMe—1i + (1 — B)gt.i)
Gt = 1 _17,5 (vGe—1,i + (1 — 7)gi)
9t+1,i — 9t,i - /—G:i T th,i
® M;; = moving average of gradients, as in momentum.
® G:;; = moving average of squared gradients, as in Adagrad.

® < avoids numerical issues

Avoiding gradient explosion

Why it exists?

* Multiplying matrices with eigenvalues > 1

* Numerical unstability when dealing with large number of params

Gradient clipping

Solution is to clip the value of gradient below some norm:

. G
G = min(p, ||G||)m

with > 0

Warm-up
* Most gradient explosition happens at the beginning of training
» Because matrices are poorly set and learning rates are large

* Solution: start with small learning and increases it

Warm-up

x QO rerevns

Learning rate scheduler (a;);

® Set a target learning rate «

t
ar = min(l, —)a

K

where K is the “warm-up” parameter

~Y

Summary of optimization

Standard optimization:
* ADAM (or AdamW)
* clipping
 cosine scheduler
* Warm-up
* Init based on fan-in
e greed search over initial learning rate and weight decay

Underfitting and overfitting

What is it?

* Underfitting:
* not enough parameters to express complexity in data
* l[ow performance on training and test set

» Overfitting:
* t00 many parameters match too well complexity in training data
* high performance on training set, low on test set

possible f

o D

ibl
o possible f

low variance/ high variance/
high bias : oot Ceade:ofs : low bias

® Complexity of model increases with number of layers

® FEasier to overfit on data

True in the low” data regime

* Problem is that training set is small (few millions data)
* Easy to memorize training set

* No generalization

Not true in the infinite’ data regime

e Overfitting on infinite data is good, most models underfit
* In this setting, there is no more " test” set

* Example: large language models are in the infinite” data regime

What to do in this regime?

 Find scaling rules of parameters versus data

e Estimate numbers of parameters when scaling in data

Switching to sequence modeling...

