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What is deep learning?



“person”



image label





Bounding box



“person running in the street”



scene description







Why do we need Deep Learning?



Powering the revolution in knowledge accessibility



“Grandma knitted a portal to hell” “Ikea instructions for fMRI machine” … 





How does Deep learning work?



Cover in this lecture

• Basic supervised deep learning

• Modeling and training

• Introduction to sequence modeling



Supervised deep learning



Supervised classification



Linear classifier



Classification loss



Perceptron algorithm



Doesn’t converge!



Purple: logistic regression

Properties: smooth and convex





Gradient descent

• Take step in direction of gradient to minimize loss
• Guarantee to converge to global minimum if loss is convex



Logistic regression with gradient descent











non-linear classifier = linear classifier of non-linear features. 





Which non-linear features?



Why not learn the non linear features too?

   That is the goal of deep learning











Training a neural network





Backpropagation



Backpropagation – chain rule



Backpropagation – chain rule



Backpropagation - memoization



Backpropagation - memoization

Computing gradient from end to beginning à re-use partial computation

Optimal computation of gradient at the cost of memory

Can be generalized and automated along a DAG (autograd)

V W

forward

backward



Backpropagation = chain rule + memoization



Impact of deeper network on gradients



Going deeper



Going deeper



Going deeper – vanishing gradient problem



Why?

• Non linearity puts gradient to 0

• Matrix multipliciation with eigenvalues < 1



Going deeper – vanishing gradient problem

Use non-linearity with less zero-region 



Going deeper – vanishing gradient problem

NN

norm



Optimization



Gradient descent

• Require pass over entire dataset
• Dataset contains millions/billions examples



Stochastic gradient descent (SGD)



Stochastic gradient descent (SGD)

What are the pros and cons?



Stochastic gradient descent (SGD)

i.i.d. sampling + stochastic gradients = full gradient in expectancy (no bias)

• pros:
• For one full gradient, time to do N updates with SGD -> N times faster
• works on infinite data or online 

• cons: 
• introduces variance in gradients 



Batch SGD





Weight regularization



Why is it important?

• Many networks produce same results

• Examples: permutations of weights, invariant to multiplication…

• We can reduce space of exploration to smaller set of networks

à Faster convergence 



Weight regularization

3 complementary approaches:
• Initialziation
• Normalization of activations
• Regularizing the weights



Initialization



Initialization



Fan-in initialization



Data normalization (whitening)



Intermediate normalization

Normalize intermediate features to keep 
values in range of non-linearities

• Different solutions:
• Batch normalization 
• Layer normalization
• RSMnorm
• …

NN

norm



Example: batch normalization



Example: batch normalization



• Normalization reduces space of 
parameters to explore

• faster convergence 

• Layer norm is prefered over batch norm



Weight decay



Setting learning rate





Solution 0: fixed learning rate



Solution 1: linear decay 



Solution 2: cosine scheduler

• Same as linear linear decay with a cosine function: αt = α0 cos(t/Tpi/2)

• Last learning rate often equals to 0.1 of initial value



Beyond vanilla SGD



Not all direction are equal



Not all direction are equal

We want to go fast in some directions, slow in others



Vectorized SGD: one step size per dimension



Example: Adagrad

• No need to set a learning rate schedule
• Gt,i is the accumulation of the squared gradients
• Squared norm avoids exploding or vanishing gradient 
• ε avoids numerical issues. 



Use previous gradients

Previous gradients are not bad estimates of current curvature



Example: momentum (or heavy ball)



Example: momentum (or heavy ball)



Momentum + vectorized stepsize = ADAM



Avoiding gradient explosion



Why it exists?

• Multiplying matrices with eigenvalues > 1

• Numerical unstability when dealing with large number of params



Gradient clipping

Solution is to clip the value of gradient below some norm:



Warm-up

• Most gradient explosition happens at the beginning of training

• Because matrices are poorly set and learning rates are large

• Solution: start with small learning and increases it 



Warm-up



Summary of optimization

Standard optimization:  
• ADAM (or AdamW)
• clipping
• cosine scheduler
• Warm-up
• Init based on fan-in
• greed search over initial learning rate and weight decay



Underfitting and overfitting



What is it?

• Underfitting: 
• not enough parameters to express complexity in data
• low performance on training and test set

• Overfitting: 
• too many parameters match too well complexity in training data
• high performance on training set, low on test set





True in the ``low’’ data regime

• Problem is that training set is small (few millions data)

• Easy to memorize training set

• No generalization



Not true in the ``infinite’’ data regime

• Overfitting on infinite data is good, most models underfit

• In this setting, there is no more ``test’’ set

• Example: large language models are in the ``infinite’’ data regime



What to do in this regime?

• Find scaling rules of parameters versus data

• Estimate numbers of parameters when scaling in data



Switching to sequence modeling…


