Sequence modeling

Armand Joulin

Google DeepMind
ajoulin@google.com

Why?

® Example of temporal sequences:
® videos
® robot moving in an environment
® video games...

...but first an introduction to language modeling

What is language modeling

Language modeling assigning probability to a text
® A text is a sequence of tokens

® tokens can be words, characters or group of characters.

For example:

{acat} = ({a,cat},

What is language modeling

Language modeling assigning probability to a text
® A text is a sequence of tokens

® tokens can be words, characters or group of characters.

For example:

{acat} = ({a,cat},
= {a7 7C7a7t}’

What is language modeling

Language modeling assigning probability to a text
® A text is a sequence of tokens

® tokens can be words, characters or group of characters.

For example:

{acat} = ({a,cat},
= {a7 7C7a7t}’
= {a, ,cat}.

What is language modeling

Language modeling assigning probability to a text
® A text is a sequence of tokens

® tokens can be words, characters or group of characters.

® For example:
{acat} = ({a,cat},
= {a7) C? a? t}?
= {a, ,ca,t}.
® For most of this lecture, we assume that tokens are words

What is language modeling

® Given a sequence {wi,...,wr} of tokens, a language model
estimates its probability:

® P depends on a vocabulary, i.e., the set of unique tokens.

® P can be conditioned on an external variable, i.e.,

P(.)=P(| C)

Applications of language modeling

Language models are applied in several fields:
® Speech recognition:

P("Vanilla, | scream™) < P("Vanilla ice cream”).

® Machine translation:

P("Dégu en bien" | "Pleasantly surprised”) <
P(" Agréablement surpris” | " Pleasantly surprised”)

e Optical Character Recognition:

P("mOve fast”) < P("move fast”)

Applications of language modeling

® Language models are just models of sequences

® they can apply to any sequence, like video or audio

Probabilistic language model

® Sequence probability as a product of token probabilities:

;
P(le--wWT):HP(Wt|Wtfla-wan)

t=1

Probabilistic language model

® Sequence probability as a product of token probabilities:

;
'D(le---»WT):HP(Wt|Wtfla-wan)

® |ndeed we have:

Probabilistic language model

® Sequence probability as a product of token probabilities:

)
P(wi,...wr) = [P(we | wer,...,wa)

t=1

® Indeed we have:
P(a, b) = P(a)P(b | a)
® Recursively applied to a sequence:

P(w1, wa,w3) = P(w1)P(wz, w3 | wi)
= P(wi)P(wa | w1)P(ws | wa, wr).

Probabilistic language model

® Sequence probability as a product of token probabilities:

)
P(wi,...wr) = [P(we | wer,...,wa)

t=1
® Indeed we have:
P(a,b) = P(a)P(b | a)
® Recursively applied to a sequence:

P(w1, wa,w3) = P(w1)P(wz, w3 | wi)
= P(wi)P(wa | w1)P(ws | wa, wr).

® |anguage models estimate probability of upcoming token
given past:
P(we | wee1, ..., wi).

Preliminaries: words as vectors

® We assume a fixed vocabulary of V words

® we represent the /-th word by a V' dimensional vector w;:

w,-[j]z{l if j =1,

0 otherwise

These word vectors are:
® independent: w/w; =0 if i # j
® normalized: w/w; =1

i

We call this representation “one-hot vectors”

For now on, the notation w; represents the one-hot vector of
the word at the t-th position in the sentence

A linear model for bigrams

® The input is the 1-hot vector of the previous word: x; = w;_1

The output is the 1-hot vector of the upcoming word: y; = w;

® Linear model z = Ax
® Build a probability over all possible words:
exp(z[K])
fly, Dkl = v =
>_i—1 exp(z[1])

® A cross-entropy loss: £(q,p) = —q" log(p)

Learning a linear bigram model is equivalent to:

.
. 1
A, T ; £(ye, F(Axt))

Limitations of linear models

-
) 1
AcRVXV T ; e, Ax:)

® The matrix A is O(V?)
® Example: V = 10k — 100,000,000 parameters

e Difficult and slow to scale to longer n-grams

Neural bigram model

e feedforward network:

hi1 = o(Aw;-1)
p: = f(Bhe)

o(x) = 1/(1+ exp(—x)) pointwise sigmoid
function

e A: V x H matrix; B: H x V matrix
o H<<V

® Minimization problem:

-

1

| Zf (we, f(Bo(Aw_1)))
[t

7

Neural n-gram model

Generalization to any fixed n-gram:

® The input is the contactenation
of previous words:

Xt = [Wt—n—l—la e 7Wt—1]

e A: nV x H matrix

® Minimization problem:

1

;
Zz (we, f(Bo(Axy)))
t:l

Recurrent Neural Network

® Recurrent network: Keep memory of past in the hidden

variables
Feedforward Recurrent Network
hi 1 =0 (AW g, ..., Wi 1]) h;_1 = 0 (Aw;_1 + Rh;_3)
p: = f(Bh:_1) p: = f(Bh:_1)

W

| |

loss loss

t t

De D¢

t s - t s

h, R hy
SN t

1 Wea

Recurrent Neural Network

R R R 1 B
hy — o — —_ B,

hy,
T A T A 1 A
Wiz

® Recurrent equation: hy = o (A[h:_1,wy])
e Unfold over time: very deep feedforward with weight
sharing

® Potentially capture long term dependencies

Recurrent Neural Network: training

w,

|

loss

t
gt
fa s

h, =%~ e
tia
W

® Backpropagation through time (BPTT): same as
backpropagation through a very deepfeedforward network

Recurrent Neural Network: training

W, Weg W

Il I(}s‘s Il
1 o

Pz Pes Pt
b - ol "l
b’ - ouEe--EE
tla tha s
w; Wez Wi

¢ batch BPTT: forward/backward for many words
simultaneously

Recurrent Neural Network: training

P
1 L} t

Tl R R Zfl —R> 513
1 1t

Wy Wiz Weq

¢ Problem with BPTT: Computing 1 gradient is O(T). Too
slow.

Recurrent Neural Network: training

w2 Wea We

4 B 4
t} t} tl

P
R R R Tl R TLB

hyy =2 hja T T2 he T My
tha o

1%
Wiz Weq

Wek1

® Truncated BPTT: Go back in time for k step: O(k).

Transformer Networks

Motivation

® |n recurrent networks, we have

ht = f(htf]_, Wt)'

RNNs encode the whole history in single vector hy_;

Instead, can we use all token representations to compute h;?

Technical challenge:

need to combine a variable number of representations!

Convolutional Neural Networks?

Embed Embed Embed

Let's represent this sentence,

® Pros

® easy to parallelize

® exploits local context
® Cons

® span of context increase linearly with number of layers
® need to be very deep to have large context

from Vaswani and Huang:
http://web.stanford.edu/class/cs224n/slides/

http://web.stanford.edu/class/cs224n/slides/

Combining vectors with attention

e Solution: use the (self) attention mechanism

e Given a set of vectors wy, ..., wr € RY representing tokens

T
ht = E a,'ti;
i=1

where Z,T:1 aip = 1.

® \We could use a;; = % and get a BoW

Combining vectors with attention

® Introducing matrix W € R¥*7T where columns correspond to
Wi,
h; = VWa,
e And finally
H = VWA

Combining vectors with attention

® How to compute the matrix A?
A = softmax(W ' KT QW)

where the softmax is applied column-wise.

® Why softmax? to get positive entries, and columns summing
to 1.

e Why W'KTQW? Bilinear form over the input

Combining vectors with attention

Putting everything together:
H = VWsoftmax(W ' KT QW)

where H/W € RY*T and V, K, Q € R9*¢

V. K, Q are parameters to be learned.

This operation is called self-attention

It can be generalized to multiple heads:

® Split input vectors into n subvectors of dimension d/n,
® Apply self attention (with different V, K, Q) over these smaller
vectors

® Concatenate the results to get back d dimensional vectors

Combining vectors with attention

FFNN FFNN FFNN

cmp]
r Iy \ ry
Embed Embed Embed
f
Let’s represent this sentence,

from Vaswani and Huang:
http://web.stanford.edu/class/cs224n/slides/

http://web.stanford.edu/class/cs224n/slides/

Combining vectors with attention

® Goal: use all the context to update a word
® |dea: look for the most important words in the context

® Solution: self-attention on the sequence of inputs

Combining vectors with attention

embedcings D DR BB D 2 O

cat slowly drinks a of milk

Combining vectors with attention

output

embedcings D B R E B D 2 O

cat slowly drinks a of milk

Combining vectors with attention

output

embedcings | D B R E B D] D

cat slowly drinks a of milk

Combining vectors with attention

output

embeddmgs.g B0 0B D] l

cat slowly drinks a of milk |

Combining vectors with attention

query

]

(
embedcings D B R R B D 2 O

cat slowly drinks a of milk

Combining vectors with attention

query

"what type of words
1 am looking for”

(
embedcings D B R R B D 2 O

cat slowly drinks a of milk

Combining vectors with attention

query key value

] _ N

| N/
— D 1 I I

cat slowly drinks a bit of milk

Combining vectors with attention

query key value
"what type 0f information
words I am” 1 provide”

| \/
embeddings D D D D D D D D

cat slowly drinks a of milk

Combining vectors with attention

Combining vectors with attention

query key value

] _ N

| N/
— D 1 I I

cat slowly drinks a bit of milk

Combining vectors with attention

{ query key } value

embedcings D B R R B D 2 O

cat slowly drinks a of milk

Combining vectors with attention

embedcings D B R R B D 2 O

cat slowly drinks a of milk

Combining vectors with attention

B score

embedcings D B R R B D 2 O

cat slowly drinks a of milk

Combining vectors with attention

Combining vectors with attention

Combining vectors with attention

of] off o] =f] of] sf] a(]

[N O
~c-§ 0 E 0 EEOE

at slowly drinks a bit of milk

Combining vectors with attention

of] =ff o] | =] of] sf] sf]

[A
~w: 0 0 000 EE

cat slowly drinks a bit of milk

Combining vectors with attention

of] =ff o] | =] of] sf] sf]

I A A
~w:0 0 0 800 EE

cat slowly drinks a bit of milk

Combining vectors with attention

® “query vector” for word |
(“drinks"): D 9
q; = Qw; I Q
e “key vector” for word t (“milk"): D Wi
drinks

kt = KWt

ap

w

milk

Combining vectors with attention

® ‘“query vector” for word i k
(“drinks"): D 9 D '
q; = Qw; I Q I K
e “key vector” for word t (“milk"): D w; D w;
drinks milk
kt = KWt

® Their similarity score is then:

-
sic = q; ki

Combining vectors with attention

® “query vector” for word |
(“drinks"): D 9
q; = Qw; [Q0
e “key vector” for word t (“milk"): D w;
drinks
kt = KWt

® Their similarity score is then:

-
sic = q; ki

® Normalize over sequence with
softmax:

&
K
Dw,

alID=A(|:| 7.)

exp(sit)

~ > exp(si)

ajt

Combining vectors with attention

e ‘“value vector” for word t (“milk"):

Vi = VW1_L

Combining vectors with attention

e ‘“value vector” for word t (“milk”): [v

Vi = VW1_L

® Finally, compute output for

“drinks”:
=2 M
yi = Z ajtVt D XD
t

Transformer network

Transformer block:

® Multi-head attention layer with skip
connection and normalization

® Followed by feed forward with skip
connection and normalization

Skip connection+normalization:
® Given a network block nn and input x

® The output y is computed as
y = norm(x + nn(x))

where norm normalize the input

Add & Norm

Feed
Forward

) S—

f—>| Add & Norm l

Multi-Head
Attention

tr

 S—

Vaswani et al.
(2017)

Transformer network

Feed forward block

® Two layer network, with RelLU activation
y = W2ReLU(W1x)

e Usually, Wy € R*¥*9 and W, € RIx4d

® i.e. hidden layer of dimension 4d.

Add & Norm

Feed
Forward

) —

f->| Add & Norm l

Multi-Head
Attention

A P

) S

Vaswani et al.
(2017)

Position embeddings

e Limitation: self attention does not take position into
account!

Indeed, shuffling the input gives the same results

Solution: add position encodings.
Replace the matrix W by W + E, where E € RI*T

E can be learned, or defined using sin and cos:

: J
€2jj = sin <100002',/d>

_ J
€2i41,j = COS (100002i/d>

Transformer network: take away

Add & Norm

Feed
Forward
Transformer network: —
e Token embeddings + Position embeddings ,~{"Add & Norm)
® Then N transformer blocks (e.g. N = 12) Multi-Head
. Attention
® Softmax classifier X 7
S|

Vaswani et al.
(2017)

References |

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is
all you need. In Advances in Neural Information Processing
Systems, pages 5998—-6008.

	Sequence modeling
	References

