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Neural Networks

Last week: Introduction to neural networks

(A. Joulin)

I . . o
This week: Neural networks for visual recognition

(G. Varol)

Next week: Beyond classification: Object detection, Segmentation, Human pose estimation

(G. Varol)



FII‘S'l' words that come to your mind when hearing
“neural networks for visual recognition”?
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Disclaimer: Terminology
* Neural networks?

 Artificial neural networks?

* Multilayer neural networks?



This lecture
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This lecture
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Definitions

“Al” Any technique that enables computers to mimic human behavior
Machine Learning Ability to learn without explicitly being programmed

“Deep” Learning Extract patterns from data using neural networks

Computer Vision Extracting meaning from visual signals

NLP Extracting meaning from textual signals

8 Slide credit: Alexander Amini



Agenda

* 1. Recap: Bag of Visual Words, Analogy with NNs

* 2. Neural networks (NNs) for computer vision:
» Applications
* A brief history: from perceptron to MLPs to CNNs

+ 3. Convolutional neural networks (CNNs)
» Standard layers
* Recap: Training NNs
* Visualizing CNNs
* Pretraining & finetuning NNs
» Typical CNN architectures

* 4, Beyond CNNs

» Attention & Transformer
* Vision Transformers

- 5. Beyond classification
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Recap: Image recognition so far

Instance-level
recognition
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Category Recognition

* |mage classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present

Slide: C. Schmid

12



Category Recognition

* |mage classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present

Location

Category

Slide: C. Schmid
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Difficulties: wit

IN-C

lass variations

Slide: C. Schmid
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Why machine learning?

- Early approaches: simple features + handcrafted models
- Can handle only few images, simple tasks

by DiFfe nhiated prcture.

L. G. Roberts, Machine Perception of Three Dimensional Solids,
Ph.D. thesis, MIT Department of Electrical Engineering, 1963.

ABSTRACT

In order to make it possible for a computer to construct and
display a three-dimensional array of solid objects from a single
two-dimensional photograph, the rules and assumptions of depth
perception have been carefully analyzed and mechanized. It is assumed
that a photograph is a perspective projection of a set of objects which
can be constructed from transformations of known three-dimensional
models, and that the objects are supported by other visible objects or
by a ground plane. These assumptions enable a computer to obtzin a
reasonable, three-dimensional description from the edge information
in a photograph by means of a topological, mathematical process.

A computer program has been written which can process a
photograph into a line drawing, transform the line drawing into a three-
dimensional representation, and finally, display the three-dimensional

siructure with all the hidden lines remowved, from any point of view. The
2-D to 3-D construction and 3-D to 2-D display processes are sufficiently
general to handle most collections of planar-surfaced objects and provide
a valuable starting point for futurc investigation of computer-aided three-

dimensional systems,

Slide: C. Schmid
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Why machine learning?

- Early approaches: manual programming of rules
- Tedious, limited, and does not take data into account
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Figure 3. A system developed in 1978 by Ohta. Kanade and Sakai [33. 32] for knowledge-based interpretation of outdoor natural scenes.
The system is able to label an image (c) into semantic classes: S-sky, T-tree, R-road, B-building, U-unknown.

Y. Ohta, T. Kanade, and T. Sakai, “An Analysis System for Scenes Containing objects with Substructures,”
International Joint Conference on Pattern Recognition, 1978. Slide: C. Schmid 16



Why machine learning?

- Today lots of data, complex tasks

Internet mages,
personal photo albums

Movies, news, sports

* |nstead of trying to encode rules directly, learn them from examples of
iInputs and desired outputs

Slide: C. Schmid

17



Texture Classification

* Profound observation: Grass and sea pictures don't look the same!

- Basic idea: Model the distribution of "texture” over the image (or over a
region) and classify in different classes based on the texture models learned
from training examples.
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Image categorization

* Profound observation: Cows and buildings don't look the same!

- Basic idea: Model the distribution of "texture” over the image (or over a
region) and classify in different classes based on the texture models learned

from training examples.
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Bag-of-features for image classification

Origin: texture recognition

» Texture is characterized by the repetition of basic elements or textons

B 3 = s
.
-~ - >~ —
= E
d - oy
- - e -
ol
"
. - : .
:

® L va

YT O LA A A AR

)

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003: Lazebnik, Schmid & Ponce, 2003
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Analogy with Text Analysis

Political observers say that the government of Zorgia does not control the
political situation. The government will not hold elections ...
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Analogy with Text Analysis

The ZH-20 unit is a 200Gigahertz
processor with 2Gigabyte memory.
Its strength is its bus and high-
speed memory......
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Bag-of-features for image classification

Image n =
L
o 34

> @ ’.‘-
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Bag-of-features for image classification
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Step 1: feature extraction

Sparse sampling

» SIFT as interest point detector

Dense sampling

* Interest points do not necessarily capture “all” features

Illm!ll
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Step 1: feature extraction

Sparse sampling

» SIFT as interest point detector

Dense sampling

* Interest points do not necessarily capture “all” features

» Spatial pyramid (Lazebnik, Schmid & Ponce, CVPR 2006)

Illm!ll
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Step 2: Quantization

Cluster descriptors

« K-means

» Gaussian mixture model

Assign each visual word to a cluster

* Hard or soft assignment

Build frequency histogram

29



Examples for visual words

TR
N N,

W
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Image representation

frequency

FPLUNENL, B

codewords

 Each image Is represented by an aggregated histogram vector, typically
1000-4000 dimensional

* Normalized with L2 norm
* Fisher Vectors [Perronnin et al. ECCV’'10]. improvements over Bag of Features
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Bag-of-features for image classification

Image 1
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Step 3: Classification

Training data: Vectors are histograms, one from each image

positive

negative

Train classifier,e.g. SVM
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Step 3: Classification

Learn a decision rule (classifier) assigning bag-of-features
representations of images to different classes

Decision 7ebra
boundary

“.. Non-zebra

*
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Traditional Recognition Approach

Image/
Video
Pixels

Hand-designed Trainable

feature

. classifier
extraction

Object

= Class

Slide: R. Fergus / S. Lazebnik
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Traditional Recognition Example

Image/
VIGOSS  SIFT + BOF
Pixels
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LS o il e q&_J H [ H |_| : 8 OO o g. SN \\Op\ti\qal.ma'rgin
Lowe (1999, 2004) PLN"ALD RS 00 O optimal hyperplane

codewords Cortes, Vapnik (199&)

 SIFT features
 BOF: Bag of Features / Visual Words (inspired by Bag of Words in NLP)
« SVM: Support Vector Machines for classification



Analogy to the traditional visual recognition pipeline

Image/
Video ©
Pixels

Hand-designed Trainable Object
feature extraction classifier Class

* Features are not learned (e.g., HOG, SIFT, Bag of Features)
* Trainable classifier is often generic (e.g., SYM, Random Forest)

Slide: R. Fergus / S. Lazebnik
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Analogy to the traditional visual recognition pipeline

What about learning the features?

Image/
Video Trainable classifier

Pixels

Object

Class

* Features are learned “end-to-end” (i.e., pixels are input)
e “Feature hierarchy” all the way from pixels to classifier
* Each layer extracts features from the output of previous layer

* Train all layers jointly

Slide: R. Fergus / S. Lazebnik
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Analogy to the traditional visual recognition pipeline

Image/

Video © Layer 1 — Layer 2

Pixe|s *

= Layer 3

Simple
Classifier

Object

Class

* Features are learned “end-to-end” (i.e., pixels are input)
e “Feature hierarchy” all the way from pixels to classifier
* Each layer extracts features from the output of previous layer

* Train all layers jointly

Slide: R. Fergus / S. Lazebnik
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“Shallow” vs. “deep” models

Traditional recognition: “Shallow” architecture

Image/ _ |
Video Hand-designed Trainable

Pixels feature extraction classifier

Deep learning: "Deep” architecture

Image/

- | Object
Video . > . J

40
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Agenda

* 1. Recap: Bag of Visual Words, Analogy with NNs

* 2. Neural networks (NNs) for computer vision:

» Applications
* A brief history: from perceptron to MLPs to CNNs

+ 3. Convolutional neural networks (CNNs)
» Standard layers
* Recap: Training NNs
* Visualizing CNNs
* Pretraining & finetuning NNs
» Typical CNN architectures

* 4, Beyond CNNs
» Attention & Transformer

 Vision Transformers

- 5. Beyond classification
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Neural Networks
in Production




Face detection

Slide credit: Kosta Derpanis
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Self-driving cars / Autonomous vehicles

“We’ve built an AV that 1s seamlessly integrating
into traffic in Munich, Paris, Detroit, Jerusalem,
New York, Tokyo, and other cities across the globe.”

¢ mobileyer



Shopping

Slide credit: Kosta Derpanis



Google Translate

Google Translate

X Text B Documents @ Websites

DETECT LANGUAGE ENGLISH FRENCH | vV Pl FRENCH TURKISH ENGLISH v

this course is so interesting X ce cours est tellement intéressant v«
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What is “Deep”
Learning?



Recap: Basics of supervised learning

* 1 training data pairs (Z1,91)5 s (Tns Yn) € X X Y
* Learn a predictor/decision function f:x— A
* By minimizing zn: I(F(

1=1

48



Recap: Basics of supervised learning

* 1 training data pairs (Z1,91), s (TnyYn) € X XY
* Learn a predictor/decision function f X — A

®* By minimizin
Y g sz)’ n

71N\

Loss  Model Input  Label

49



Deep learning

N

Zl(f(ﬂfz' » Yi

)
/NN

Loss  Model Input  Label

N—

Input Hidden Lavyer Output
Layer Layer .
Deep learning:
Input #1 —=
o .\\V', Model = neural network
‘Q" O\
Input #2 —= .\‘"b .
V,‘}V \C *Q— Outpt
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What is a “deep” neural network?

Stacking more than one layer

Input Hidden Lavyer Output
Laver C)\ Layer
Input #1 —-

RO,
L

Input #2 —= .%:;

/
w@[‘ ( F

\p
Input #3 “’}f‘$ .

Input #4 —=

S

0
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What is a layer?

Typically matrix multiplication! (But the function can take many forms™)

* Fully-connected layer

+ Convolution layer

 Pooling layer (e.g., Max-pooling)
* Non-linearity layer (e.g., RelLU)
* Attention layer

*requirement to be differentiable if optimized with gradient descent algorithm variants
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Recap: Perceptrons [Rosenblatt, 1957]

Most basic form of a neural network Sigmoid function:

1.25

Input
Weights

X1

Wi
X5 W)
X3 Output: c(w-x + b)

W3

Non-linearity Bias

W Linear combination

X4

of inputs



NEW NAVY DEVICE
LEARN > BY DOING

Psychologlst Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and be .con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704” com-
puter—Ilearned to differentiate

between right and left after|

fifty aftempts in the Navy's
demonstration for newsmen,,

The servxce said it would use
ple to bulld the first

fnmshed in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

ings, Perceptron will make mis-
takeg at first, but will grow
wiser as it gains experience, he
said,

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-

falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers,

Without Human Controls |
The Navy said the perceptron

would be the - first non-hving
mechanism “capable of receiv-

ing, recognizing and identifying
its surroundings without -any

msuman training or control.”
e “brain jesignec
remember images and informa-.
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .
Later Perceptrons will be able

lto recognize people and call out

‘their names and instantly trans-

late speech in one language to

speech or writing in another
language, it was predlcted

Mr. Rosenblatt said in prin-
cnple it would be possible to
build brains that could repro-
duce themselves on an assembly

line and which would be con-

scious of their existence,

|

1958 New York

Times...

In today’s demonstration, the
“704"” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing
In the first fifty trials, the

machine made no dlstmctlon be-:

tween them. It then started
registering a “Q"” for the left
squares and ‘“O"” for the right

squares.
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms. But he said the computer
had undergone a “self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain

has 10,000,000,000 responsive
cells, including 100,000,000 con-

nections with the eyes.
l

———— —

Slide credit: Lana Lazeb#hik



Recap: Multi-Layer Perceptron (MLP)

Linear regression:

Perceptron:

MLP:

Input #1 —

Input #2 —=

Input #3 —»=

Input #4 —=

Input Hidden Lavyer Output
Layer Q Layer
J
> N
}\,3;! () 7N
CEREL A~
&3\% OI;:Q* Output Y
J

2N

RO
(Layer 1)

W2
(Layer 2)

Slide: R. Fergus / S. Lazebnik
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Images are numbers

r-

Slide credit: Alexander Amini

What the computer sees
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Review: Convolutional Neural Networks (CNN)

* Neural network with specialized connectivity structure
+ Stack multiple stages of feature extractors
- Higher stages compute more global, more invariant feature

+ Classification layer at the end

-
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Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ,
Proceedings of the IEEE 86(11): 2278-2324, 1998. 57

Slide: R. Fergus / S. Lazebnik


http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Progress on ImageNet

30

Top-5 Error Rate (%)
P
(¥

ILSVRC Top 5 Error on ImageNet

" Hand-crafted

features

Deep Learning

B Human

2010

2011

2012

CNN (AlexNet)

2013

2014

Human

2015

2016

https://www.dsiac.org
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CNNs were not invented overnight

Image Maps
Input

1998

LeCun et al.

Convolutions

e

Fully Connected
Subsampling

# of pixels used in training

107 NIST

IMJAAGE

Year 2010

NEC-UIUC

Dense descriptor grid:
HOG, LBP

2012

Krizhevsky et al.
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Slide credit: Fei-Fei Li & Justin Johnson & Serena Yeung

|
4

Coding: local coordinate,
super-vector

4

Pooling, SPM

A 4

Linear SVM

[Lin CVPR 2011]

Large Scale Visual Recognition Challenge

Year 2012 Year 2014 Year 2015
SuperVision GoogleNet VGG

@Pooling % |
v

@Convolution conv-64

Softmax
@0ther

conv-64

maxpool
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[~ conv-128
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£ ;T ,_L 8% conv-256

w ) conv-256
L QOO maxpool
. e conv-512
‘ conv-512
[l _—~ > e

L L 00 maxpool
= O%DQ conv-512
il o< L Q0O conv-512
PR | D! § maxpool
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8 fc-1000

5

[Krizhevsky NIPS 2012]

[Szegedy arxiv 2014] [Simonyan arxiv 2014] [He ICCV 2015]
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Why now?

Neural Networks date back decades.

1952

1958

1986

1995

2012

Stochastic Gradient Descent

Perceptron
e Learnable Weights

Backpropagation
e Multi-Layer Perceptron

Deep Convolutional NN
* Digit Recognition

AlexNet

Slide credit: Alexander Amini

1. Big Data

* Larger datasets
* Easier collection &

storage

LAION-400-MILLION OPEN
DATASET

2. Hardware

* Graphics Processing
Units (GPUs)

* Massively
Parallelizable

3. Software

* I[mproved Techniques
* New Models

¢ Toolboxes

O PyTorch

TensorFlow

60



CVPR:
(Computer Vision Pattern
Recognition Conference)
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Agenda

* 1. Recap: Bag of Visual Words, Analogy with NNs

* 2. Neural networks (NNs) for computer vision:
» Applications
* A brief history: from perceptron to MLPs to CNNs

+ 3. Convolutional neural networks (CNNs)
» Standard layers
* Recap: Training NNs

* Visualizing CNNs
* Pretraining & finetuning NNs
* Typical CNN architectures

* 4, Beyond CNNs

» Attention & Transformer
* Vision Transformers

- 5. Beyond classification
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Agenda

* 1. Recap: Bag of Visual Words, Analogy with NNs

* 2. Neural networks (NNs) for computer vision:
» Applications
* A brief history: from perceptron to MLPs to CNNs

+ 3. Convolutional neural networks (CNNs)

» Standard layers

* Recap: Training NNs

* Visualizing CNNs

* Pretraining & finetuning NNs
* Typical CNN architectures

* 4, Beyond CNNs

» Attention & Transformer
* Vision Transformers

- 5. Beyond classification
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Standard layers

1. Fully-connected layer Learnable
2. Convolution layer } parameters
3. Pooling layer (e.g., Max-pooling)
4. Non-linearity layer (e.g., ReLU)

5. Normalization layer (e.g., BatchNorm

abobuwi
indu
[e X yzT Xyl

Convolutional block

UOIN|OAUOY)

64

AjlIDauI-uoN

Fully-connected block

pPajoauu0d-A||ng
AjlIDauI-UON|

[0001]

Ajjgogoud

sSD|D)



1. Fully-connected layer

AN :
\\ \\ he = w + b
L VAN \\\k\ hy 7/12
N

h=Wx+b; hizzwijxj+bi
j

Slide credit: Naila Murrays



2. Convolution layer

Fully-connected 1D Convolutional

h=Wx+b; hizzwijxj-l-bi hi=ZWij+i+b
j Jj

» Layer with a special connectivity structure
* Dependencies are local

 Translation invariance
Slide credit: Naila Murrayé



2. Convolution layer

Fully-connected 1D Convolutional

2
h, = Z WjXj+1 + Dy
hl /=L

~Z

) @) (@) @) &

Slide credit: Naila Murray7



2. Convolution layer

Fully-connected 1D Convolutional
® &
= Z w + b
@\ & 7

Slide credit: Naila Murrays



2. Convolution layer

2D Convolutions

(I % K)(i, j) == Z Z I(m,m)K(i +m,j +n)

Slide credit: Naila Murray9



2. Convolution layer

2D Convolutions (1x0) + (0x0) + (0x1) +
(0x0) + (0x2) + (0x0) +
(Ox1) + (1x1) + (2x0)

[ x K

(I % K)(i, j) == Z Z I(m,m)K(i +m,j +n)

Slide credit: Naila Murrayo



2. Convolution layer

2D Convolutions

(I % K)(i, j) == ZZ I(m,m)K(i +m,j +n)

Slide credit: Naila Murray!1



2. Convolution layer

2D Convolutions

(I % K)(i, j) == Z z I(m,m)K(i +m,j +n)

Slide credit: Naila Murray2



2. Convolution layer

2D Convolutions

(I % K)(i, j) == Z z I(m,m)K(i +m,j +n)

Slide credit: Naila Murray3



2. Convolution layer

The data manipulated by a CNN has the form of 3D tensors. These are interpreted
as discrete vector fields x, assigning a feature vector (Xuv1, ..., Xuvc) at each

spatial location (v,u).

A colour image is a simple example of a vector field with 3D features (RGB):

channels

Slide: A. Vedaldi
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2. Convolution layer

With a bank of 3D filters

X— y=Fx*xx+b

Linear convolution applies a bank of linear filters F to the input tensor Xx.
Input tensor x = H X W x C array

Filter bank F=H x W x C x Q array
Output tensory = (H - H + 1) X (W-V_V+ 1) X Q array

Slide: A. Vedaldi
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2. Convolution layer

Credit: Martin Gorner
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2. Convolution layer

As a neural network

input features a bank of 2 filters

2-dimensional
output features

Slide: A. Vedaldi
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Filter bank example

- A bank of 256 filters (learned from data)

- Each filter has 1 channel (it applies to a grayscale image)
- Each filter is 16x16 pixels

16 pixels

16 pixels

Slide: A. Zisserman
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Filtering

Each filter generates a “feature map”

Maximum response when
filter matches signal

Feature Map

Slide: R. Fergus / S. Lazebnik
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Convolution details

What is the output size?

N

Output size:
(N - F) / stride + 1

eg.N=7,F=3:

stride1=>(7-3)1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=...:\

Slide: A. Karpathy / L. Fei Fei
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Example: What is the output volume?

3| Al 0005

32 7

Input volume: 32x32x3
Receptive fields: 5x5, stride 3
Number of neurons: 5

Output volume: (32-5)/3 +1 =10, so: 10x10x5
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Zero padding (in each channel)

e.g. input 7x7
neuron with receptive field 3x3, stride 1
pad with 1 pixel border => what is the output?

o O | O O | O

/X7 => preserved size!

In general, common to see stride 1, size F, and
zero-padding with (F-1)/2.
(Will preserve input size spatially)

Slide: A. Karpathy / L. Fei Fei
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What is the number of parameters?

Consider an input gray-scale image of 1000x1000 pixels.

What is the number of parameters of a filter bank of 100 7x7 filters?

How does it compare to a fully connected layer that considers the entire input image?

Convolution:
100x 7x7/
= 4900 parameters

VS.

Fully connected layer:

1000x1000

X

1000x1000

= 1B parameters.

input features

a bank of 2 filters

2-dimensional
output features

Figure: A. Zisserman
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Single depth slice

3. Spatial Max Pooling

1112 | 4
5|16 |73
312|110
112 | 3| 4

max pool with 2x2 filters
and stride 2

>

Slide credit: Andrej Karpathy & Fei-Fei &#



3. Spatial Max Pooling

Dimensions of pooling outputs

Input volume of size [W1 x H1 x D1]
Pooling unit receptive fields F x F and applying them at

strides of S gives

Output volume: [W2, H2, D1]
W2 = (W1-F)/S+1, H2 = (H1-F)/S+1

Note: pooling happens independently in each channel/slice

Slide: A. Karpathy / L. Fei Fei
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Sigmoid

4. Non-linearity

* The non-linear activation functions are essential. Why?

Tanh

.........
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Sigmoid

........

4. Non-linearity
Why?

.........

* Non-linearities allow us to approximate arbitrarily complex functions.

e Universal approximation theorem: A two-layer multilayer perceptron (MLP)
with increasing continuous and bounded non-linearity can approximate any
continuous function on a compact given enough hidden neurons. [Cybenko 1989]

* Linear activation functions produce linear decisions no matter what the
model size, i.e., stacking multiple linear functions can be expressed with a single
linear function.
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- Slide: K. Derpanis
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y(x) = max(0, x)

| Slide: K. Derpanis

?1



What is the derivative of the RelLU?




y(x) = max(ax, x)

r- Siide: K. Derpanis
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4. Non-Linearity

- Per-element (independent) Sigmoic Tan

- Options: N
» Sigmoid: 1/(1+exp(-x))
* Tanh

* Rectified linear unit (RelU)
» Simplifies backpropagation

reluix)

* Makes learning faster
» Avoids saturation issues

* Variants of RelU, e.g. Leaky RelU

Slide: R. Fergus / S. Lazebnik



5. Normalization

Batch Norm Layer Norm Instance Norm Group Norm

H, W
H,W
H,W

V)

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with /N as the batch axis, C as the channel axis, and (H, W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

[Wu & He, “Group normalization”, ECCV 2018]
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CNN Successes

+  Handwritten text/digits |- ETESTE
* MNIST (0.17% error [Ciresan et al. 2011]) Iaag==a
* Arabic & Chinese [Ciresan et al. 2012]
= ...l
Simpler recognition benchmarks '['ﬁm@l..\

* CIFAR-10 (9.3% error [Wan et al. 2013]) =

» Traffic sign recognition (0.56% error vs 1.16% for humans [Ciresan et al. 2011]) 1 o~

;z -,fﬁ .
But until recently, less good at more complex datasets .
* Caltech-101/256 (few training examples)

96
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ImageNet Dataset

{

N

E

5
Y%
i

F ¥ SAsT s 48 §
[ — ”

'S s

"

-

p £ S
’ — - Vg‘.:v
- 7 (| WY
\ - -
J
-~
- L4

[Deng et al. CVPR 2009]

~14 million labeled images, 20k classes

Challenge: 1.2 million training images,
1000 classes

Images gathered from Internet

Human labels via Amazon Mechanical Turk

Slide: R. Fergus / S. Lazebnik
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ImageNet Challenge 2012 (ILSVRC)

Similar framework to LeCun’98 but:

Bigger model (7 hidden layers, 60,000,000 params)
More data (106 vs. 103 images)

GPU implementation (50x speedup over CPU)
* Trained on two GPUs for a week

Better regularization for training (DropQOut)

/ 5
| 48
; 5
Q é. t*-. |
O\ s
{Strid Max
of 4 pooling
3 48
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Seo
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.. v ‘a\"
-
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192

192

Max
pooling

\13

-----

192

-
..‘
-

-
-
‘b

.

AlexNet

.

L 4
v"’

.....

-
-
-

————>
dense

128 Max

pooling

Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton,

2048

2048

, NIPS 2012

Slide: R. Fergus / S. Lazebnik
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http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

ImageNet Challenge 2012 (ILSVRC)

AlexNet - 16.4% error (top-5)
Next best (non-convnet) - 26.2% error

.

SuperVision IS

AlexNet
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Agenda

* 1. Recap: Bag of Visual Words, Analogy with NNs

* 2. Neural networks (NNs) for computer vision:
» Applications
* A brief history: from perceptron to MLPs to CNNs

+ 3. Convolutional neural networks (CNNs)

» Standard layers
* Recap: Training NNs
* Visualizing s

* Pretraining & finetuning NNs
* Typical CNN architectures

* 4, Beyond CNNs
» Attention & Transformer

 Vision Transformers

- 5. Beyond classification
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Gradient descent

+ The objective function is an average over all N training data points:

|
() =— 2 ( )
+ Performing a gradient descent is iterating.

Xt BE(O,X,-, \/,)

Or+1 — 0 N ,- 90

+ Need to choose the learning rate policy «,
+ If the function is not convex, get stuck in a local minimum

+ Each step can be expensive to compute if the dataset is large

Convex case

-~ @racient

R
o
O
Global cost minimum
>
Parameter value
Image source
A Non-convex
-
3 Fats o
O Plateau
Local
Minima

>

Parameter value

Image source
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https://winder.ai/blog/2017/img/gradient_descent_issues.svg
https://miro.medium.com/max/1400/1*WGHn1L4NveQ85nn3o7Dd2g.webp

Stochastic gradient descent

Instead of computing the gradient, compute an approximation:

Xt 86(9,)(,‘, \/,)
N / 00

U

80(6, X (i), y ()
00

0t+1 — Ht

Orr1 — Or — ot

Can take advantage of large datasets, in particular infinite* datasets!

Introduce stochasticity, which might be good to get out of local minima in the non-convex case

102



Stochastic gradient descent with minibatch

Some variance is good, too much can be bad

Xt 86(9,)(,‘, \/,)
N / 00

U

K
Orr1 — 04 (;t z 36(9’8);” Yi) (with K << N)
i=1

0t+1 — Ht

It's faster to compute several gradients in parallel

In practice, using batches as large as possible so that the network fits in the GPU memory (e.g.,
between 1 and 256, depending on the task and network)
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Summary: Stochastic Gradient Descent (SGD)

The objective function is an average over all N training data points:

Xt 68(9, X,‘, Y,)
N I, 00

Orr1 — 04

Key idea: approximate the gradient with 1 random datapoint:

90(0, X (i), y (i)
06

6t+1 —> gt — (¢t

Pick K random points instead of picking 1 (with K<< N):

Ut A BE(O,X,', Y,)

K < 00
=1

Ory1 — 04

Slide credit: Andrea Vedaldi

(gradient descent)

(stochastic gradient descent)

(stochastic gradient descent
with mini-batches)

=> commonly used
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Quiz: 5 minutes

Let’s consider a training dataset of N samples. How many iterations (i.e.,
parameter updates) are there in one training epoch?

a. Gradient descent:
b. Stochastic gradient descent:

slido.com

#2871 232

c. Stochastic gradient descent with minibatch of size K:

b.
SR
| - F -rr:J

EI:E 24

slldo com

#2871 233

slido.com

#2549 484
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Backpropagation

Computing the gradients: While in theory, we just have the gradients of composite functions and for that
apply chain rule, there is an efficient way to do it, called backpropagation.

Y;: bike
g l
C3 C4 C5 fe

2\
0‘.“ Ci [pC2 f7 fs -»Ioss

—

X;:image I
Wi W2 W3 W4 W5 W6 W7 W8
forward }§
backward
derror derror derror derror derror derror derror derror
aw+ aw?2 aws aw4 aws dwe awz aws

Slide credit: Andrea Vedaldi [Derivatives, Backpropagation, and Vectorization] http://cs231n.stanford.edu/handouts/derivatives.pdf 106



http://cs231n.stanford.edu/handouts/derivatives.pdf

Training a neural network
Given a (X, Y) pair:

® Forward pass: apply network to X to produce an output Y
e Evaluation: Compute loss function, i.e., £(Y,Y)
® Backward pass: compute the gradient with backprogation

® Update: Take a step in the direction of the gradient

107

Slide: A. Joulin



Loss Function

* Regression:
* L1 (absolute error) / L2 (squared error)
* Classification:

* Cross-entropy loss

108



Loss Function: Regression

Estimating a continuous value

* L1 (absolute error)

L=|fx, 0~

* L2 (squared error)

L=(f(X,0) -Y)

l

—

Prediction: Ground truth:
output of (label, annotation)
the network f
with parameters v,
given input X;
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Loss Function: Classification

* Cross-entropy loss = softmax + negative log-likelihood

“““ .'~~‘
“" R, ," :0’ 1 qe 0“‘
loss(x, class) =i— log ( exp(x|class|) )

*

ZJ exp(x|] D

e 65

""" e> + et + e?

Fig: Micheleen Harris 110



“Problems” with training

* Making poor predictions on the training data (underfitting)

* Not generalizing to unseen data (overfitting)

11



Example: polynomial regression of degree M

M=0

M=1
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“Typical” machine learning setup

Data split into three sets

Validation set Test set

(Sometimes referred as

Training set

“development” set)

\4

Allowed to make statistics, learn models, Not allowed to “see”
tune hyperparameters

* Learn models on the training set

e Evaluate on the validation set many times (run experiments to find good hyperparameters,
e.g., number of epochs, learning rate, batch size...)

¢ (Optional: Learn the final model on the combination of training and validation sets)

* Evaluate on the test set “once”
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A few possible scenarios for learning curves

Good fit: both decreasing,

converging, minimal gap

3.5+

3.0 4
2.5 1
2.0+
1.5 4
1.0+

0.5 1

Overfit: validation increasing

Less

— frain
vzlidation

1.0 |

0.9 4

0.8 1

0.7 4

0.6 4

0.5 1

0.4 -

Less

— frain
vzlidation

0.8 -

0.6 -

0.4 -

(1.00044) -

0.00035 -

0.00030 -

0.00025 -

(1.00020 -

0.00015

0.00010 -

0.00005 -

Unrepresentative validation set:
easier than training set

\

\
\

Less

—— frain
- vzlidation

\
N A
o \\,\.«JA——- _/’L,_,\_, " .4,‘\_-/"'\-, .

0

+1 044

20 40 60 80 1CC

Underfit: training loss not decreasing

Less

— [rain
validalion

—  frain
validation

Unrepresentative validation set:
too few examples

Loss

1.1 1 —— train

validation
1.0 -
0.9 -
0.8 -
0.7 -

0.6 \
0.5 A ,\,\j\

0.4 1 "\/\_»..../\.,-\/\/‘-'\_—'vw“vw"ww’\

0.3

0 20 40 60 80 100

Underfit: training halted prematurely

Less
10757 ~_ —— fran
i
= “*--‘\\\ ——— yzlidation
1.050 i o
- \\
1.025 - T

1.000 - | \

0.975 - \

! \\
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I I 1
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Credit: Jason Brownlee
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https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/author/jasonb/

How to avoid overfitting?

Data augmentation
Deep networks have many parameters. Original  Rotation Flip Scaling  Brightness

Some regularization techniques: g i i a
* Smaller network, i.e., less parameters «s -l
. Image source
® Data augmentation
° ° [ II [ ,,
® Suboptimize, i.e., “early stopping ‘
* Force redundancy in hidden units, i.e., “dropout” .
¢ Penalize parameter norms, i.e., “weight decay” "l s
L2 penalty: oy
encourages the norm of S
the parameters to be low — 1
IPIE ) — 0, —a’= — a0
L9+—|9| t+1 Uy — & ——= — X AU,

\_'_I Y
gradient

115


https://www.baeldung.com/wp-content/uploads/sites/4/2022/08/AugmentData.png

Look at your results

* When you train a network, you should try to really understand what is happening:
* Train/val/test sets are important
* Look at loss and performance on train/val sets during training
* Choose LR, compare networks, try ditferent initialization (random seed:s)

* Very important: Look at your data and results (e.g., visualize predictions) on
training and testing data.

116

Slide: M. Aubry



Practical problems

* Data loading:

* Loading “on the fly”: needed for big datasets, use efficient database
structure, fast disk access, e.g., SSD

* Loading to RAM: possible for smaller datasets, or pre-computed features
» Speed: use GPUs, parallel data loading
* Network size: get lots of memory on your GPU or/and use several GPUs

Good news: you don’t have to do all of it!
Many ready-to-use and efficient frameworks are available (e.g., Pytorch)

Slide: M. Aubry
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deep learning frameworks

I c ka g es Al & Images 1) Videos (& News [ Books i More Tools
100U pS 10 secon )

. P)’TO I'Ch (P)’fh on) From sources across the web
Mfcrch.org[ fensorFlow ' Caff Cafie

>/T PyTorch X T Apache MxNet Microsoft Cognitive Toolk
’ Te n so r F I OW ( PYII. h 0 n ) B G O o g I e 1,::' Deeplearningé) Torch Chainer
https://www.tensorflow.or |
P U gL ) = Theano H,00 H20 O l\ Onnx
2 C
¢ LU CI To rc h I::} Horovaod Vv eea Scikit-learn v /5\, i!N Apache SINGA
hitp://torch.ch/ . g1 oo J casoos

- Catfte (C++, pycafte, matcattfe)
hitp://cafte.berkeleyvision.org/

+ MatConvNet (Matlab)

hitp://www.vlfeat.org/matconvnet/
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http://pytorch.org/
https://www.tensorflow.org/
http://torch.ch/
http://torch.ch/
http://torch.ch/
http://caffe.berkeleyvision.org/
http://www.vlfeat.org/matconvnet/

self.convl = nn.Conv2ad(l, 1@, kernel_size=5)

self.convZz = nn.Conv2d({19, 20, kemel size=5)

, class Netinn.Module):
Let’s look at Logirergriors
super(Net, self). init ()
some code
: : relf.fc1 = an.Linear(320, 50) | * Key part of
(more in Assignment 2) serr.1c2 = an-vinear(se, 20
pytorch code

def forward(self, x):
X = F.relu(F.max pool2d(self.convlix), 2)) f r CNN I rn°n
X F.relu(F.max pool2d(self.conv2 dropi(self.conv2i(x)), 2)) 0 eq I g
X x.view(-1, 3290)
x = F.relu(self.fcl(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)

* The key objects are

1T args.cuda:
model.cudal()

optim.SGD(model.parameters{), lr=args.lr, momentum=args.momentum)

def train(epoch):

- model,
- optimizer,
nodel.train()

- dCI'l'CIIOCIder, for batch idx, (data, target) -'

1f args.cuda:
Ioss data, target data.cudal{), target.cudal)
[ )

optimizer.zero_grad()
output = model(data)
F.nlLl_loss{output, target)

0ss.backward()
optimizer.step()
for epoch in range(l, args.epochs + 1):
train(epoch) 119
Slide: M. Aubry



Agenda

* 1. Recap: Bag of Visual Words, Analogy with NNs

* 2. Neural networks (NNs) for computer vision:
» Applications
* A brief history: from perceptron to MLPs to CNNs

+ 3. Convolutional neural networks (CNNs)
» Standard layers

* Recap: Training NNs
* Pretraining & tinetuning NNs
* Typical CNN architectures

* 4, Beyond CNNs
» Attention & Transformer

 Vision Transformers

- 5. Beyond classification
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Visualizing CNNs

What does CNN learn once it is trained?
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Recap: AlexNet

Convolutional block Fully-connected block

* Fully-connected layer

+ Convolution layer

* Pooling layer (e.g., Max-pooling)
* Non-linearity layer (e.g., RelLU)
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AlexNet: [Krizhevsky 2012] 122



Layer 1: Top-9 patches

Patches from validation images that give

maximal activation of a given feature map
, A, ; R
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= NaEn g:g o ::: =_.: . Learned filters

- | Bl
—

p— ;._. 4 “ll l

BEE EOE BRSNS

P WA mm-
"us | =
TLEALV L

-
‘ =i _'._“ h--

EEE W
s B
1Y

Bl 434 W BE

S
A
k|

B
A
.
Al
s
2

1

ari
.

a 4 .
i

T BV Bl g

-
N N

-
i mu.

a2

[Zeiler and Fergus, Visualizing and Understanding
Convolutional Networks, ECCV 2014]
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Layer 2: Top-9 patches
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Layer 3: Top-9 patches
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Layer 4: Top-9 patches
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Layer 5: Top-9 patches
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References: Visualizing and understanding NNs

Analysis tools Artistic tools
Visualizing higher-layer features of a deep network Google’s “inceptionism”
Ethan et al. 2009 Mordvintsev et al. 2015

[intermediate features]
Style synthesis and transfer

Deep inside convolutional networks
P Gatys et al. 2015

Simonyan et al. 2014
[deepest features, aka “deep dreams’]

DeConvNets
Zeiler et al. In ECCV, 2014
[intermediate features]

Understanding neural networks through deep visualisation
Yosinksi et al. 2015
[intermediate features]
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Transferring learnt
representations

‘pretraining”

130



“Pre-training” and transfer learning

Pretained layers Fine-tuned layers

representation » predictor » label
CNN as universal representations Application
First several layers in most CNNs Pre-train on ImageNet classification
are generic 1M images
They can be reused when training Cut at some deep conv or FC layer
data is comparatively scarce to get features

[Evaluations in A. S. Razavian, 2014, Chatfield et al., 2014] 131
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“Pre-training” and transfer learning

Deep representations are generic

deep feature encoder

trained on a reference dataset (eg ImageNet)
trained on target dataset (eg PASCAL)

predictor

A general purpose deep encoder is obtained by chopping off the last layers of a CNN
trained on a large dataset.

132
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Potted plant Sofa TV monitor

Learning and Transferring Mid-Level Image
Representations using Convolutional Neural Networks

M. Oquab, L. Bofttou, I. Laptev, J. Sivic
In CVPR 2014

http://www.di.ens.fr/willow/research/cnn/

Slide: A. Vedaldi
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ImageNet classification challenge

ImageNet classification
challenge

4- — -\_
B | ul
\ L4
- .': b lf_-
”» i . o
3
P ‘
~ e ¥4 " ’ ‘a
.' - I. n =

Object centric
1000 classes
1.2M Images
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What about other recognition tasks and datasets?

ImageNet classification
challenge

;V it

S‘ 1_._'-‘17_;- !' |
Object centric Complex scenes
1000 classes 20 classes
1.2M images 10k iImages
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Background - Convolutional neurdal
network of [Krizhevsky et al. 2012]

Training images 1000 [abels

' fric ‘ep!
Convolutional layers Fully-connected layers E African elephant

QWellclock
C1-C2-C3-C4-C5 [+ rcs fof rc7 ——| Fcs . -
614151:'-7- E Green snake

vector ‘
. Yorkshire terrier

Input: ~1M labelled images (1000 images / 1000 classes)
Number of parameters: ~60 million --- image representation
Training time: ~1 week on one GPU

Learn parameters using stochastic gradient descent on
cross-entropy error function.

Can we transfer learnt parameters to other tasks with limited

training data?
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Challenge

The dataset statistics between the source task (ImageNet)
and the target task (Pascal VOC) can be very different.

* Type of objects and labels
* QObject size, object location, scene clutter
* Object viewpoints, imaging conditions

ImageNet Pascal VOC

137
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Approach

Training images

Convolutional layers

Fully-connected layers

1000 labels

. African elephant

ﬁ Wall clock
.
o | Green snake

-~
Yorkshire terrier
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Approach [Oquab, Bottou, Laptev,
Sivic, CVPR’ 14}

Traiing images Source task abels

. F |
Convolutional layers Fully-connected layers . et

E Wall clock
C1-C2-C3-C4-C5 FCB [ FCT | FCE 1
6144-dim Green snake

| wvector
-~ , _
Yorkshire terrier

b
parameters S — I

I . Chair

l I ; l Background
. Cl C2-C3-C4-C5 prevum il = Bamdil =N (B 2
6144-d 'rI Person

5216-dim 4056 or vector I
1 144-
= 6“\ :I,m | g TV/monitor
| New adaptation

layers trained I
Target task | ontargettask Target task labels

1. Design training/test procedure using sliding windows
2. Train adaptation layers to map labels

See also [Girshick et al.’13], [Donahue et al.’13], [Sermanet et al. ’14], [Zeiler and Fergus ’13]

Transfer learning workshop at ICCV’13, ImageNet workshop at ICCV’13 139



Pre-training helps

plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv

mAP
) 85.2 75.0 694 66.2 48.8 82.1 79.5 798 624 619 498 759 714 8277 93.1 59.1 69.7 49.3 80.0 76.7 @b
93.5 784 87.7 80.9 573 85.0 81.6 894 669 73.8 620 89.5 832 876 958 614 79.0 543 88.0 78.3 /787

—

O PRETRAIN
SRE-1000
PRE-1000R 032 77.9 83.8 80.0 55.8 82.7 79.0 84.3 66.2 71.7 595 834 814 84.8 952 598 749 529 R83.8 75.71| 76.3
PRE-1512 046 829 88.2 84.1 60.3 89.0 844 90.7 72.1 86.8 690 92.1 934 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8

- Pascal VOC 2012 object classification

Action

INO PRETRAIN]

PRE-1512
RE-1512U

- Pascal VOC 2012 action classification

jump phon instr read bike horse run phot compwalkjmAP

43.2 30.6 50.2 25.0 76.8 80.7 75.2 22.2 37.9 55.6(49.7
73.4 44.8 74.8 43.2 92.1 94.3 83.4 45.7 65.5 66.8/ 68.
74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.
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Other "pre-training"
examples




ction

» »

3D hand-object reconstru

Pretraining _ Finetuning
Hand error = Object error
45.0- & 4000
=425 “I- Real - == Real
. ) w |
€ 40.0 ~f— Synth2Real | Q 3500 \ ~= Synth2Real
1 37.5- © 3
0. k0
@ 30.0- ué
=575 =1
' ' ' L 1 1 1 1 1 '
% ® 8 3 3 1O % ® 5 1 2 1
Fraction of real data Fraction of real data

Figure 8: We compare training on FHB only (Real) and
pre-training on synthetic, followed by fine-tuning on FHB
(Synth2Real). As the amount of real data decreases, the benefit
of pre-training increases. For both the object and the hand recon-
struction, synthetic pre-training is critical in low-data regimes.

Hasson et al. "Learning joint reconstruction of hands and manipulated objects”, CVPR 2019. 142



Texi-to-Video Retrieval

Pretraining on millions of images & videos
Finetuning on MSRVTT with 9K training videos

1. Aman and a woman performing a musical.

2. A teenage couple perform in an amateur musical

3. Dancers are playing a routine.

4. People are dancing in a musical.

5. Some people are acting and singing for performance.

Pre-training ;.. ; ..oy #pairs [TR@1 |TR@10 |MedR

- - 22.3 55

K&l ImageNet 54.4 9.0

Noisy [_] HowTo-17M subset 17.1M 63.9 5.0
ISl CC3M 3.0M 62.7 5.0

L] WebVid2M 2.5M 64.9 5.0
B+ CC3M + WebVid2M  5.5M 68.1 4.0

Bain et al. "Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval”, ICCV 2021. 143



Sign Language Recognition

Pretraining on various tasks on different datasets
Finetuning on 50K videos from BSL-1K sign language dataset

7()

D
O

36.44

top-5
per-class accuracy (%)

L
<

10 -

=
O c
- O
c =
2 5
o o
@ @
: 5
O T
S <

Random init

() :
Jester WILASL Kinetics

Dataset Dataset Dataset

150K clips, 14K clips, 240K clips,
27 classes 2K classes 400 classes

Albanie et al. "BSL-1K: Scaling up co-articulated sign language recognition using mouthing cues”, ECCV 2020. 144



Pretraining Summary

» Common practice: Pretrain on large data, finetune on small data.
» Remove the last class-specific layer (e.g. 1000 categories)
+ Add new layer(s) for the new task randomly initialized
» Either “freeze” the pretrained parameters and train a simple classifier on top,

* Or train “end-to-end” all parameters.
» Avoids overfitting
» Shortens training time
* Lots of pretrained models available online

* Task and domain-relevant pretraining is usually better

145



Agenda

* 1. Recap: Bag of Visual Words, Analogy with NNs

* 2. Neural networks (NNs) for computer vision:
» Applications
* A brief history: from perceptron to MLPs to CNNs

+ 3. Convolutional neural networks (CNNs)
» Standard layers
* Recap: Training NNs
* Visualizing CNNs

* Pretraining & finetuning NN
* Typical CNN architectures

* 4, Beyond CNNs
» Attention & Transformer

 Vision Transformers

- 5. Beyond classification
146



A CNN for image classification

prediction

Recall: the goal of this model is to map an input image to a
class prediction.

147
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Recall: The AlexNet model

A breakthrough in image understanding

: A , )
] I . ‘ : ; S ‘ p - \ e :O . » .’0""‘-‘

!
3 4 !
!

il

- — — .
-

™

[AlexNet by Krizhevsky et al. 2012]

Each large block represents a data The number of filters can be deduced
tensor from the number of feature channels
Each smaller block represents a filter There are two parallel streams in this

The filter size and stride are shown network (for efficiency reasons)

148
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How deep is deep enough?

AlexNet (2012)

2 |

BB

13

5 convolutional layers

X

3 fully-connected layers

A

Slide: A. Vedaldi



How deep is deep enough?

AlexNet (2012)

FRCERCEREEE R R R R

VGG-M (2013)

> e

& -RER

LRI T RN NN WO RO RAY WA HAY IY N WAL A NN

VGG-VD-16 (2014)

L UL B U 2 I vt e OO BT S RO B N N Gt R i ot AN

HAH AR

Slide: A. Vedaldi
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A. Vedaldi

Slide

How deep is deep enough?

“ ”M ! +0 o SR o N

GooglLeNet (2014)

' i ) ' ' ' 3 ' ' ' ' ] : )
| | |

O e D e

VGG-VD-16 (2014)

i i 0 ' | ) v

SUPEFEFIEFUPEFU PRI NSNS BN R U

VGG-M (2013)

TP T S I WU W U S S

AlexNet (2012)



How deep is deep enough?

GooglLeNet (2014) ResNet 50 (2015)
VGG-VD-16 (2014) ResNet 152 (2015)
VGG-M (2013)

AlexNet (2012) —_— |

vV v v v V¥V

16 convolutional layers —————m Krizhevsky, I. Sutskever, and G. E. Hinton.

ImageNet classification with deep convolutional
neural networks. In Proc. NIPS, 2012.

. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
50 convolutional IayerS -_— Anguelov, D. Erhan, V. Vanhoucke, and A.
Rabinovich. Going deeper with convolutions. In
Proc. CVPR, 2015.

K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. In Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proc. CVPR,

152 convolutional layers —— 2016.

152
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Accuracy

3 X more accurate in 3 years

2,6
2.0
@
©
-
o
S 1,3
C
O
=
0,7
0,0
o Q S © 20 S S
\@ , > ,)\ o o °
s{\e’@ “gg QQQ e’\'6 @eQ 60’6 Q’\’d @‘?/’6
> O o X’ A AN
G O g & &
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5 x slower

5,0

3,8

2,5

Slower

1,3

0,0
R N I AN I

T

Remark: 107 ResNet layers same size/speed as 16 VGG-VD layers
Reason: far fewer feature channels (quadratic speed/space gain)
Moral: optimize your architecture 154
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CNN architectures — notes and details

* Increased depth of recent architectures
* Number of parameters matter (How to count parameters?)
* Power of small filters, e.g. 3x3 convolutions

e ResNet architecture
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The power of small filters

Suppose we stack two CONY layers with receptive field size 3x3

Q: What region of input does each neuron in 2rd CONY see?

y, Ty,
Ty, n y, =
Ny,

—' p—
— - "
)| — e

Input First Conv Second Conv

Answer: [5x5]

Slide: A. Karpathy / L. Fei Fei 156



The power of small filters

Suppose we stack three CONV layers with receptive filed size 3x3

Q: What region of input does each neuron in 3rd CONYV see?

Answer: [/XT7]
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The power of small filters

Suppose input has depth C & we want output depth C as well.

1x CONV with 7x7 filters 3x CONV with 3x3 filters

Number of weights: Number of weights:
C*(7*7*C) C*(3*3*C) + C*(3*3*C) + C*(3*3*C)
= 49 CA2 =379 7 (C"2

=27 C"2

Slide: A. Karpathy / L. Fei Fei 158



Residual networks [ResNets]

Plain net

weight layer

any two
stacked layers

weight layer

relu
H(x)

H(x) is any desired mapping,
hope the 2 weight layers fit H(x)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image
Slide: K. He Recognition”. CVPR 2016. 159



Residual networks [ResNets]

Residual net

weight layer
weight layer

Hx)=F(x)+x &

F(x) identity

X

H(x) is any desired mapping,
I o eich it H e
hope the 2 weight layers fit F(x)
let H(x) = F(x) + x 160



Residual networks [ResNets]

F(x) is a residual mapping w.r.t. identity

weight layer
weight layer

Hx)=F(x)+x &

F(x) identity

X

* |f identity were optimal,
easy to set weights as O

* |f optimal mappingis closer to identity,
easier to find small fluctuations

Slide: K. He ]6]
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Basic design (vgg-style)
+almost all 3x3 conv
- Spatial size /2 => # filters x2
+ Simple design, just deep
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CIFAR-10 experiments

CIFAR-10 plain nets CIFAR-10 ResNets

56-layer
/ 44-layer

32

20-layer

ayer
20-layer 32-layer
44-layer

)

L

WA

. S W ".‘.";l;.\ '*‘ -
st P § 56-layer
!
solid: test 3 110-layer
; 2 ‘ "6

dashed: train % i

error (%)

- Deep ResNets can be trained without difficulties
+ Deeper ResNets have lower training error and lower test error

Slide: K. He ]63



Agenda

* 1. Recap: Bag of Visual Words, Analogy with NNs

* 2. Neural networks (NNs) for computer vision:
» Applications
* A brief history: from perceptron to MLPs to CNNs

+ 3. Convolutional neural networks (CNNs)
» Standard layers
* Recap: Training NNs
* Visualizing CNNs
* Pretraining & finetuning NNs
» Typical CNN architectures

* 4, Beyond CNNs

» Attention & Transformer
* Vision Transformers

- 5. Beyond classification
164



Do we need convolutions?

Published as a conference paper at ICLR 2021
s All You Need

AN IMAGE IS WORTH 16X16 WORDS:

RANSFORMERS)\FOR IMAGE RECOGNITION AT SCALE

Ashish Vaswani’ Noam Shazeer”* Niki Parmar” Jakob Uszkoreit” o " 2 :
Google Brain Google Brain Google Research Google Research Ale:‘(ey Dosovlt.s!dy , Lucas Beyer®, Alexander Kolwnik?v ¢ Dirl" Wei.ssenbom :
avaswani@google.com noam@google.com nikip@google.com usz@google.com Xiaohua Zhai", Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby* '
Llion Jones® Aidan N. Gomez* | t.ukasz Kaiser* *equal technical contribution, Tequal advising
Google Research University of Toronto Google Brain | Goggle Rese-arch. Brain Team
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com {adosovitskiy, neilhoulsby}@google.com

1111 potosukhintgmesl. con ICLR 2021
NeurlPS 2017

Under review as a conference paper at ICLR 2022

@ ixer: An all-MLP Architecture for Vision r\ r\

Ilya Tolstikhin®, Neil Houlsby*, Alexander Kolesnikov®, Lucas Beyer”®, ~ R
Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, @ - RE A LL YOU NEED? *

Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy

*equal contribution

Google Research, Brain Team Anonymous authors
{tolstikhin, neilhoulsby, akolesnikov, lbeyer, l’apcr under dOUblC-bllﬂd rcvicw

xzhai, unterthiner, jessicayung', andstein,
keysers, usz, lucic, adosovitskiyl}@google.com

NeurlPS 2021 arxiv 2022

https://github.com/KentoNishi/awesome-all-you-need-papers
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Recent Hype#1: Transformers

e Transformers = neural network architectures
stacking "attention" layers’

» |nitially successful for natural language processing

« Then applied to computer vision<. Better
performance than CNNs given enough data.

* The hype still continues today.
» What is attention?

' Vaswani et al. "Attention is all you need", NeurlPS 2017.
2 Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale", ICLR 2021.
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Attention & Transformer

Basic transformer model

Image transformers

167



Attention

* Motivation: sequence-to-sequence models

Attention(Q, K, V) = softmax(

0, - K;
Af-f — softmax ( :/aj> Yi = ;Aljvl

168



Attention mechanisms

Given a query sequence Q, a key sequence K, and a value sequence V, compute an
attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y.

A; i = softmax
J—_E

169

Francois Fleuret The utility of transformers 4122



Attention mechanisms

Given a query sequence Q, a key sequence K, and a value sequence V, compute an
attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y.

Vi=> AV,
j

170

Francais Fleuret The utility of transformers 4/ 22



Attention mechanisms

Given a query sequence Q, a key sequence K, and a value sequence V, compute an
attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y.

A; i = softmax
J—_E

171

Francois Fleuret The utility of transformers 4122



Attention mechanisms

Given a query sequence Q, a key sequence K, and a value sequence V, compute an
attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y.

Yi=> AV
j

172

Francois Fleuret The utility of transformers 4122



Attention mechanisms

* Query and Key dimensionalities are the same.
* Value dimensionality may be different.
* Output dimensionality will be the same as Value.

¢
In "self-attention", (Q, K, V) obtained from the same input, linearly X——w—K
projected three times. Sy
)
/|
/1
A Y
4 /
S/ // ) //
’ /
S A
A / // A // /’/
//, /// /"//
/ i )4
V
oK
Q //
/

173
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Self-Attention Example v,

oulput #1

Sclf-attertion

Wy

query

_

A
multiplication | 0.0 | 00 | 0.0 | — multiplication | 1.0 Jo 00 | <— multiplication | 1.0 SL 1.5 | —
Q1 T
: ‘ 2 — — |
|
K1 key V1va|ue key value key value
01|1 1|2|3 4I40 2|8|0 2|3 1 2I6|3

T

T

Wi

input #1

W,

0I1|0

X

T

T

input #2

0I2|0

2

Repeat for Q2

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Aj; = softmax (

T

input #3
1[1] 1]
Repeat for Q3

Vi)

Yi=2 AV,
j
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Basic transformer model

- Sequence-to-sequence architecture using only point-wise processing
and attention (no recurrent units or convolutions)

Encoder: receives entire input Decoder: predicts next token
sequence and outputs encoded conditioned on encoder output and
sequence of the same length previously predicted tokens

Feed Forward

Feed Forward Encoder-Decoder Attention

NLP application:

Machine Translation

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, |. Polosukhin,
Image source Attention is all you need, NeurlPS 2017 175



https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://jalammar.github.io/illustrated-transformer/

Key-Value-Query attention model e ] [e] ]

A A A ry

Product(—»), Sum( 1)

Key vectors: K = XW/p T
Value Vectors: V' = XW,,

Query vectors

Similarities: scaled dot-product attention e : :
(0, - KJ) ~ = | E
— _ T
Ei,j ———— or Lk = QK /\/ D Softmax(T)
VD

(D is the dimensionality of the keys) e B . B
Attn. weights: A = softmax(FE, dim = 1) — | A : : :
Output vectors: | N N . N
Yi: Z]AIJI/J or I' = AV t T T

Adapted from J. Johnson 176



https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Attention mechanisms

Feed Forward
Feed Forward Encoder-Decoder Attention

Self-Attention Masked Self-Attention

- Encoder self-attention: queries, keys, and values come from previous layer of encoder
- Decoder self-attention: values corresponding to future decoder outputs are masked out

- Encoder-decoder attention: queries come from previous decoder layer, keys and values
come from output of encoder

177



Self-attention

+ Used to capture context within the sequence

Q QO

r— L © v
A D © - - 2w D © a
¢ £ £ @ .0 C 0 o, o £E c o 5 & 0 [
~ T O @© < . s O @ — 0O Q© - s O ©
5 s 5 5 =72 2B cs; S = - 3 :g s £ 7 2B g S =
As we are encoding “it’, we As we are encoding “it", we
should focus on “the animal’ should focus on “the street”

Image source 178



https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Self-attention layer

Query vectors: O = X W/,

Key vectors: K = XWj

Value vectors: V' = X,
Similarities: scaled dot-product attention

E. . = (Ql ]> or £ = QKT/@

l,] \5

(D is the dimensionality of the keys)
Attn. weights: A = softmax(E, dim = 1)
Output vectors:

Y, = ZJAZ.JVJ. or ¥V = AV

Adapted from J. Johnson

V3

V2

Vi

K3

K2

K1

One query per input vector

Yl

t

Y2

4

Y3

A
1

Product(—),

Sum(1)

A1,3

A1,2

Al,l

A
{
A2,3

A2,2

A2,1

A
1

A3,3

A3,2

A3,1

Softmax(1)
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https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Positional encoding AR AR

fProduct(%f), Sum('l‘)f
» Self attention doesn’t "know™ the order of the vectors it f
iS processing! Vs |77 Az Ay Ass
* |n order to make processing position-aware, vV, |= A, (A, |A,,
concatenate input with positional encoding ’ ’ '
Vi |7 A1,1 A2,1 Az 1

* E can be learned lookup table, or fixed function

Adapted from J. Johnson 180



https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Positional encoding

+ To give transformer information about ordering of tokens, add
function of position (based on sines and cosines) to every input

position

T N1 23 -7 - s D - S P PN Ao DN A O PN A P D ON C A O QN AC VO PN OV DU RNCAgVENO ACWE L RN
PURREBRII3EBEFLBBRE RN AR AR R R e R AR R ARG U R AR BRE AR IR eI AT Al AN B P LR F IR ST Oy Po I L YIS ch wa S 3 8L

Image source Embedding dimension = 181



https://distill.pub/2016/augmented-rnns/

Attention mechanisms: Overview

Feed Forward Encoder-Decoder Attention
N transformer N transformer

blocks blocks

- Encoder self-attention: queries, keys, and values come from previous layer of encoder

- Decoder self-attention: values corresponding to future decoder outputs are masked out

- Encoder-decoder attention: queries come from previous decoder layer, keys and values
come from output of encoder
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- The decoder should not “look ahead”

in the output sequence

Adapted from J. Johnson

Decoder: Masked self-attention ™ *©

V3

V2

Vi

K3

K?2

K1

Yl Y2

4 4

i:’roduct(—>), Sum(1)

A1,3 A2,3 A3,3
b
A1,2 A2,2 A3,2
- Al,l A2,1 A3,1
A
1
Softmax(1)
4
- E1,3 E E3,3
—> E1,2 E E3,2
—> El,l E2,1 E3,1
A
t t |
0l 02 Q3
A A A
| | |
X1 X2 X3
<START> This IS
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Decoder: Masked self-attention

- The decoder should not “look ahead”

in the output sequence [

> 2
v
> k3
> k2
> K1

Adapted from J. Johnson

Yl

A

Y2

4

Y3

A
1

i:’roduct(—>), Sum(1)

A
|
A1,3 A2,3 A3,3
A1,2 A2,2 A3,2
Al,l A2,1 A3,1
A
1
Softmax(1)
A
E1,3 E2,3 E3,3
E1,2 E2,2 E3,2
El,l E2,1 E3,1
A A A
| | I
0l 02 Q3
A A A
I I |
X1 X2 X3
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https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Decoder: Masked self-attention

- The decoder should not “look ahead”
in the output sequence [

v

> k3

> K1

Adapted from J. Johnson

Yl

A

Y2

4

Y3

A
1

i:’roduct(—>), Sum(1)

A
1
0 0 Ag,’3
0 A2,2 A3,2
A1,1 A2,1 A3,1
A
1
Softmax(1)
A
(09) (09 E3’3
o Ez,z E3,2
E1,1 E2,1 E3,1
A A A
| | |
01 0?2 03
A A A
| | |
X1 X2 X3
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https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Attention mechanisms: Overview

Feed Forward Encoder-Decoder Attention
N transformer N transformer

blocks blocks

- Encoder self-attention: queries, keys, and values come from previous layer of encoder

- Decoder self-attention: values corresponding to future decoder outputs are masked out

- Encoder-decoder attention: queries come from previous decoder layer, keys and values
come from output of encoder
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Encoder

Add & Norm

Add & Norm
Multi-Head
Attention

y

Positional e o

Encoding
Input
Embedding

INputs

Qutput
Probabilities

Decoder

Add & Norm
Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

1 J
Fositional
& e Encoding
Output
Embedding

Qutputs
(shifted right)

Transformer architecture: Details

A. Vaswani et al., Attention is all you need, NeurlPS 2017
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https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-head attention

Run £ attention models in parallel on top

. , . | -
of ditferent linearly projected versions of
(), K, V; concatenate and |inear|y
project the results
A —
L Scaled Dot-Product .
Intuition: enables model to attend to e l

different kinds of information at different

are= o=
positions (see visualization tool)

\/
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https://github.com/jessevig/bertviz

Transformer blocks

+ A Transformer is a sequence of oI Mo
transformer blocks
+ Vaswani et al.: N=12 blocks, embedding

dimension = 512,
6 attention heads

Add & Norm: residual connection followed by

layer normalization

Feedforward: two linear layers with ReLUs In ,
between, applied independently to each vector Multi-Head
Attention

Attention is the only interaction between HINE YNINF
inputs!
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https://arxiv.org/pdf/1607.06450.pdf

Transformer architecture: Zooming back out

Qutput
Probabilities

Decoder

Add & Norm
Feed
Forward

Encoder
\
Add & Norm
ACd & 1Mo Multi-Head
Feed Attention
Forward N x

Add & Norm

N x
Add & Norm TERTs
Multi-Head Multi-Head
Attention Attention
1t U

Positional

“ A‘ Positional
Encoding ‘v & & " Encoding
Input Output
Embedding Embedding

Inputs (Sh%ggl:gm) A. Vaswani et al., Attention is all you need, NeurlPS 2017

I
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Transformer implementation

class MultiHeadedAttention(nn.Module):

nn.Linear:
Learnable params

Multi-Head Attention module from "Attention i1s ALl You Need"
Implementation modified from OpenNMT-py.
https://github.com/OpenNMT/0OpenNMT-py

def

(self, num_heads: int, size: int, dropout:

Create a multi-headed attention layer.

:param num_heads: the number of heads

:param size: model size (must be divisible by num_heads)
:param dropout: probability of dropping a unit

(MultiHeadedAttention, ) . _ ()
assert size % num_heads

.head_size = head_size = size // num_heads
.model_size size
.hum_heads = num_heads

. k_layer nn.Linear(size, num_heads * head size)
.v_layer = nn.Linear(size, num_heads * head_size)
.q_layer = nn.L1ii r(size, num_heads * head size)

.output_layer .Linear(size, size)
.softmax = nn. (dim=-1)
.dropout = nn.D] (dropout)



Transformer implementation

def (
k: Tensor, v: Tensor, q: Tensor, rel _mouth_times= , mask: Tensor =

'a |

self,

)

Computes multi-headed attention.

:param k: keys B, K, D] with K being the sentence length.
:param v: values [B, K, D]
:param q: query [B, Q, D] with Q being the sentence length.
:param mask: optional mask [B, 1, K]

» return:

batch _size = K. (6) # B

num_heads = .hum_heads # H

# project the queries (q), keys (k), and values (v)
k = (k)

vV = : ~(v)

q = : ~(q)

reshape q, k, v for our computation to [B, H, ..., D/H]
_— (batch_size, -1, num_heads, .head_size).
_— (batch_size, -1, num_heads, .head_size).
- q. (batch_size, -1, num_heads, .head_size).

# compute scores
q=0q / math.sqgrt( .head_size)




Transformer implementation

# [B, H, Q, K]
scores torch. (g, k. | (2, 3))

# apply the mask (if we have one)
# we add a dimension for the heads to it below: [B,
if mask is not :

scores scores. (~mask. u: (1),

# apply attention dropout and compute context vectors.
# [B, H, Q, K]

attention_map . (scores) softmax(E, dim = 1)
attention . di (attention_map)

# get context vector (select values with attention)
# [B, H, Q, D/H]
context torch. (attention, v) fil/
# reshape back to [B, Q, D]
context (

context. | (1, 2)

()
(batch _size, -1, num_heads .head _size)

)

# [B, Q, D]
output : ~(context)

return output, attention_map



class TransformerEncoderLayer(nn.Module):

One Transformer encoder layer has a Multi-head attention layer plus
a position-wise feed-forward Layer.

def (
self, size: 0, ff size: @, num_heads: 0, dropout: 0.

A single Transformer layer.
rparam size:

:param ff_size:

:param num_heads:

:param dropout:
i n

(TransformerEncoderLayer, ). ()

. layer_norm = nn. (size, eps=le-6)

.src_src_att (num_heads, size, dropout=dropout)
. feed_forward (

size, ff_size=ff_size, dropout=dropout

.dropout = nn. (dropout)
.Slze size

# pylint: disable=arguments—-differ
def fon (self, x: Tensor, mask: Tensor) —> Tensor:
Forward pass for a single transformer encoder Llayer.
First applies layer norm, then self attention,
then dropout with residual connection (adding the input to the result),
and then a position—wise feed-forward layer.
:param x: layer input
:param mask: input mask
: return: output tensor

X_norm . | (x)
h, att_map_src_src . S | (k=x_norm, v=x_norm, qg=x_norm, mask=mask)
h 1 (h) + X

0 : | (h)

return o




Original transformer results on machine translation

English German Translation quality English French Translation Quality
B BLEU y B BLEU
GNMT (RNN) ConvS2S (CNN) SliceNet (CNN) Transformer ~ GNMT (RNN) ConvS2S (CNN) Transformer

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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Agenda

* 1. Recap: Bag of Visual Words, Analogy with NNs

* 2. Neural networks (NNs) for computer vision:
» Applications
* A brief history: from perceptron to MLPs to CNNs

+ 3. Convolutional neural networks (CNNs)
» Standard layers
* Recap: Training NNs
* Visualizing CNNs
* Pretraining & finetuning NNs
» Typical CNN architectures

* 4, Beyond CNNs
» Attention & Transformer

- 5. Beyond classification
196



Attention & Transformers

Basic transformer model

Image transformers
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Image 'I'I‘d“SfOrmer — Gcogle Self-attention only locally

* |mage generation and super-resolution with 32x32 output,
attention restricted to local neighborhoods

Input Input

“TEEE hlklx

P>
"EHIE b b2

Table 2. On the left are image completions from our best conditional generation model, where we sample the second half. On the right are
samples from our four-fold super-resolution model trained on CIFAR-10. Our images look realistic and plausible, show good diversity

among the completion samples and observe the outputs carry surprising details for coarse inputs in super-resolution.

N. Parmar et al., Image transformer, ICML 2018 198



https://arxiv.org/pdf/1802.05751.pdf

Sparse transformers — OpenAl Zrane =

Figure 5. Unconditional samples from ImageNet 64x64, generated with an unmodified softmax temperature of 1.0. We are able to learn
long-range dependencies directly from pixels without using a multi-scale architecture.

R. Child et al., Generating Long Sequences with Sparse Transformers, arXiv 2019 199



https://arxiv.org/pdf/1904.10509.pdf

Image GPT * — Ope nAI works on reduced resolutions

Model Input Completions - Original

M. Chen et al., Generative pretraining from pixels, ICML 2020

*GPT: Generative pre-trained Transformer 200


https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
https://openai.com/blog/image-gpt/
https://openai.com/blog/image-gpt/
https://openai.com/blog/image-gpt/
https://openai.com/blog/image-gpt/
https://openai.com/blog/image-gpt/

Vision transformer (ViT) - Google - resuion

Split an image into patches, feed linearly projected patches into

standard transformer encoder

With patches of 14x14 pixels, you need 16x16=256 patches to represent 224x224 images

Vision Transformer (ViT)

Bi‘:zb MLP
%‘;lr] | Head ]

Transformer Encoder
l::l;;idntgo*@‘é@ﬁ
E 15t l b dl [ Lme'ir Pm]ectlon of I lfittened Patches
g l I | | I

| | . & e |
W »Hl{r{%‘f‘%g =
i e

Transformer Encoder

@_,

MLP

Norm

(D~

Multi-Head
Attention

A

A

A

L

Norm

.

|

Embedded

Patches

|

A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021
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https://arxiv.org/pdf/2010.11929.pdf

Vision transformer (ViT)

90 : .
S Figure 3: Transfer to ImageNet. While
N large VIT models perform worse than BiT
> e ResNets (shaded area) when pre-trained on
> 83 - small datasets, they shine when pre-trained on
> - larger datasets. Similarly, larger ViT variants
:ﬁ’ j 1 overtake smaller ones as the dataset grows.

— 80 -

Q_‘ il

O _

— .

|5 - . .

Z 75" BiT ViT-L/32 BiT: Big Transfer (ResNet)

0 ViT-B/32 ViT-L/16 VIT: Vision Transformer (Base/Large/Huge,
E _ ViT-B/16 ViT-H/14 patch size of 14x14, 16x16, or 32x32)

70 -

ImageNet ImageNet-21k JET-300M Internal Google dataset (not public)

Pre-training dataset

A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021
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https://arxiv.org/pdf/1912.11370.pdf
https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html
https://arxiv.org/pdf/2010.11929.pdf

Masked autoencoders are scalable vision learners

input

:

’u 4 Y

':" ’

.‘ encoder — decoder
I, )
B,

J

HPNE™
- ENNE =
s 4 [ | |
- FiEEE
HEREHS

target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
1mages to produce representations for recognition tasks.

K. He et al. Masked autoencoders are scalable vision learners. arXiv 2021
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https://arxiv.org/pdf/2111.06377.pdf

Masked autoencoders are scalable vision learners

Figure 2. Example results on ImageNet validation images. For each triplet, we show the masked image (left), our MAE reconstruction’
(middle), and the ground-truth (right). The masking ratio 1s 80%, leaving only 39 out of 196 patches. More examples are in the appendix.
TAs no loss is computed on visible patches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible
patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method’s behavior.

K. He et al. Masked autoencoders are scalable vision learners. arXiv 2021



https://arxiv.org/pdf/2111.06377.pdf

Detection Transformer (DETR)

* Hybrid of CNN and transformer, aimed at standard
recognition task

-
- -

,,,, .-~ Nno object (o)

Ead
'-
’-

= T transformer

—» encoder-
decoder

set of image features

backbone ! encoder

E set of image featuresi:
i  DRPIUL

transformer
encoder

FFN

FFN (>

transformer
decoder

iada |

FFN

S

N. Carion et al., End-to-end object detection with transformers, ECCV 2020
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https://arxiv.org/pdf/2005.12872.pdf

Do we need attention?

£ Postedbyu/L-MK7monthsago @& &3 $4 842D
576 [R] Do You Even Need Attention? A Stack of Feed-Forward Layers Does
< Surprisingly Well on ImageNet

Research

https://www.reddit.com/r/MachineLearning/comments/n62ghn/r_do _you even_need_ attention_a_stack of/ 206



Do we need attention?

MLP-Mixer: An all-MLP Architecture for Vision

Ilya Tolstikhin®, Neil Houlsby”, Alexander Kolesnikov®, Lucas Beyer”®,
Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner,

Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy

*equal contribution

1202 AeN v

Google Research, Brain Team

{tolstikhin, neilhoulsby, akolesnikov, lbeyer,
xzhai, unterthiner, jessicayung', andstein,
keysers, usz, lucic, adosovitskiyl}@google.com

Do You Even Need Attention? A Stack of Feed-Forward Layers Does
Surprisingly Well on ImageNet

Luke Melas-Kyriazi
Oxford University

1202 Ael\ 9

lukemk@robots . .ox.ac.uk

Pay Attention to MLPs

Hanxiao Lin, Zihang Dai, David R. So, Quoc V. Le
Google Rescarch, Brmin Team
{hanxiaol ,zihangd,davidso,qvl}Ogoogle.con

1202 Ae\ /1
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Recent Hype#2: MLPs (!)

Back to basics

MLPs perform similar to
Transformers while being
more efficient

CNNs and MLPs
complexity linear with the
number of input

pixels, Transformers
quadratic

MLP-Mixer: An all-MLP Architecture for Vision

Ilya Tolstikhin®, Neil Houlsby”®, Alexander Kolesnikov®, Lucas Beyer”®,
Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner,
Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy

*equal contribution
Google Research, Brain Team

{tolstikhin, neilhoulsby, akolesnikov, lbeyer,
xzhai, unterthiner, jcssicayung', andstein,
keysers, usz, lucic, adosovitskiyl}@google.com

1202 AeN v

Do You Even Need Attention? A Stack of Feed-Forward Layers Does
Surprisingly Well on ImageNet

Luke Melas-Kyriazi
Oxford University

lukemk@robots . .ox.ac.uk

Pay Attention to MLPs

Hanxiao Lin, Zihang Dai, David R. So, Quoc V. Le
Google Research, Bran Team
{hanxiaol ,zihangd,davidso,qvl}Ogoogle.con

1202 Ael\ 9

1202 Ael\ /1
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Summary: Beyond CNNs

¢ CN NS (convolution), TranSfOrmerS (attention), MLPS (fully connected)
* There is no answer to which architecture Is better.
» Often depends on the data.

* |f you have infinite data, more complex can be better
(e.g., MLP ~ Transformers > CNN).

« Similar performance can be obtained with more
efficient models (e.g., MLP ~ Transformers)

* |t is possible there will be newer/better architectures/
hypes before you graduate. Stay tuned.
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Agenda

* 1. Recap: Bag of Visual Words, Analogy with NNs

* 2. Neural networks (NNs) for computer vision:
» Applications
* A brief history: from perceptron to MLPs to CNNs

+ 3. Convolutional neural networks (CNNs)
» Standard layers
* Recap: Training NNs
* Visualizing CNNs
* Pretraining & finetuning NNs
» Typical CNN architectures

* 4, Beyond CNNs

» Attention & Transformer
* Vision Transformers

» 5. Beyond classification - preview
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The field makes progress

Beyond
Classification




Computer vision tasks

Extracting meaning from
J J Object recognition,

visual signals” Object detection,
Pixel-level segmentation,
3D localization,
etc.

*Visual signal: Image, video, depth, 3D point cloud, MRI, scans, ...

Slide credit: Naila Murray 212



Example tasks

Slide credit: Naila Murray



Object recognition and localization (detection)

- Car

o

Slide credit: Naila Murray



Visual question answering

Q: Is this an outdoor scene?
A: Yes

Q: What is the weather like?
A: Cloudy but dry

Slide credit: Naila Murray 215



Activity recognition

Slide credit: Naila Murray



Pose estimation

Slide credit: Naila Murray



Captioning
A jackal walking across a rural asphalt road

. &?‘9" 2l
R\ TR

Slide credit: Naila Murray



Semantic segmentation

sky
:"‘E_a_P )3 |

vegetation

Slide credit: Naila Murray



Depth estimation

Slide credit: Naila Murray



3D shape estimation

Slide credit: Naila Murray



Visual localization

Slide credit: Naila Murray 222



Object detection

CVPR2016

R 2016 Mon 2016-06-27 14:22:06

Redmon et al. YOLO, CVPR 2016 223


https://www.youtube.com/watch?v=NM6lrxy0bxs

Segmentation

NN\

——

Y

A
7

| RolAlign

He et al. Mask R-CNN. ICCV 2017.

AN N N A NN

“CO

N NN

-

V

NN N NN\
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Human pose eshmahcn

—— faw =5
=X '
_.; —_ 5
- — ’

U Coordinates V Coordinates

Guler et al. DensePose, CYPR 2018


https://www.youtube.com/watch?v=Dhkd_bAwwMc

Text-to-image retrieval

Contrastive Language-Image Pretraining (CLIP)

Text

TR Encoder » i | l | i i
~———— Contrastive objective: in a batch of
- N image-text pairs, classify each
e - 7Y text string to the correct image and
: vice versa

A. Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021
https://openai.com/blog/clip/
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Text-to-video retrieval

Text Query

Billy reveals the truth to

| ouis about the Duke’s bet . T?Xt'v'deo *
_ _ retrieval model
which changed both their
lives

\4

Similarity: 0.89




\Yele in Ti :
# Frozen in Time &
®. Video Search Demo =

e.g. empty El:rejwi.t In .,}E

Visual search of ~2.6M videos are based on research described in
Frozen in time: A joint video and image encoder for end-to-end retrieval.

[Bain, Nagrani, Varol, Zisserman, ICCV 2021]



Text-based image generation: DALL-E

BACKPROP | |BuaO

(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads

a tapir with the texture of an hedgehog 1n a christmas “backprop”. a neon sign that

accordion. sweater walking a dog reads “backprop”. backprop
neon sign

A. Ramesh et al., Zero-Shot Text-to-Image Generation, ICML 2021
https://openai.com/blog/dall-e/
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Summary of today

* 1. Recap: Bag of Visual Words, Analogy with NNs

* 2. Neural networks (NNs) for computer vision:
» Applications
* A brief history: from perceptron to MLPs to CNNs

+ 3. Convolutional neural networks (CNNs)
» Standard layers
* Recap: Training NNs
* Visualizing CNNs
* Pretraining & finetuning NNs
» Typical CNN architectures

* 4, Beyond CNNs
» Attention & Transformer

 Vision Transformers

- 5. Beyond classification
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Key elements of DL for CV

Initially in CV GModel (i.e., architectural definition of connectivity and learnable parameters)

Next in CV

These days in CV !

‘Optimization algorithm (i.e., variations of SGD)

ML community
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Still many open questions
. 3D

* Videos

* Visual perception in robotics
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