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Announcements

Assignment 2 on neural networks
 Due on Today



Instance-level recognition

Previous lectures:

Introduction, Basic camera geometry (J. Ponce),

local invariant features, correspondence and matching
(G. Varol)

Supervised learning (A. Joulin)
Neural networks for visual recognition (G. Varol)
Beyond classification: object detection (G. Varol)

This lecture (J. Sivic):

Efficient visual search

Next week (G. Varol):
« Generative models, vision and language



Outline — Efficient visual search

1. Efficient matching of local descriptors
- Approximate nearest neighbor search
- k-d trees, locality-sensitive hashing (LSH)

2. Aggregate local descriptors into a single vector
- Bag-of-visual-words, inverted files, query expansion

3. Compact representations for very large-scale search
- Product quantization (PQ)

4. Learnable representations
- Neural representations for large-scale visual search
- Visual search using natural language query




Recap: Local features

Scale and affine co-variant feature detection
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Recap: Matching

Feature matching
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Model (query) image 128D descriptor Target image
space
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Geometric verification (RANSAC, Hough transform)

Matches consistent with an affine
transformation

Tentative matches



1000+ descriptors per image



Recap: Matching

Match regions between frames using SIFT descriptors and
spatial consistency

Multiple regions overcome problem of partial occlusion



Matching: Update

Better matches using recent CNN features instead of SIFT

Rocco, Cimpoi, Arandjelovic, Torii, Pajdla, Sivic,
Neighbourhood consensus networks, NIPS 2018



What about multiple images”?

So far, we have seen successful matching of a query
image to a single target image using local features.

How to generalize this strategy to multiple target images
with reasonable complexity?

« 10,104 103, ..., 107, ... 1070, ... images?



Example: Visual search in an entire feature length movie

Charade

“Find this bag” “Charade” [Donen, 1963]

Demo:
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.nhtml



Example: Visual search in an entire feature length movie
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Techniques from efficient search are also used for

- Efficient representation of memory in neural networks

Lample et al., Large memory layers with product keys, arXiv preprint
arXiv:1907.05242.

* Reducing memory footprint of neural networks by

guantization

Fan et al., Training with Quantization Noise for Extreme Model
Compression, ICLR 2021 (preprint arXiv:2004.07320)

P. Stock et al., And the Bit Goes Down: Revisiting the Quantization of
Neural Networks, ICLR 2020 (preprint arXiv:1907.05686)

Gong et al., Compressing deep convolutional networks using vector
quantization, arXiv:1412.6115, 2014

« Efficient search of video language embedding spaces.

Miech et al., HowTo100M: Learning a Text-Video Embedding by
Watching Hundred Million Narrated Video Clips, ICCV 2019.

Demo: https://www.di.ens.fr/willow/research/howto100m/



https://www.di.ens.fr/willow/research/howto100m/

Two strategies

1. Efficient approximate nearest neighbor search on local
feature descriptors.

2. Quantize descriptors into a “visual vocabulary” and use
efficient techniques from text retrieval.

(Bag-of-words representation)
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Strategy |: Efficient approximate NN search

Local features

invariant
descriptor
vectors

>

invariant
descriptor
vectors

>

Compute local features in each image independently

“Label” each feature by a descriptor vector based on its intensity
Finding corresponding features - finding nearest neighbour vectors
Rank matched images by number of (tentatively) corresponding regions
Verify top ranked images based on spatial consistency




Finding nearest neighbour vectors

Establish correspondences between a query image and images in the database
by nearest neighbour matching on SIFT vectors
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Model image 128D descriptor Image database
space

Solve following problem for all feature vectors, X; € R23 in the query image:
Vi NN(j) = arg miin [|x; — x|

where, X; € R1%8 , are features from all the database images.



Quick look at the complexity of the NN-search

N ... images
M ... regions per image (~1000)
D ... dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example:

» Matching two images (N=1), each having 1000 SIFT descriptors
Nearest neighbors search: 0.4 s (2 GHz CPU, implementation in C)

* Memory footprint: 1000 * 128 = 128kB / image

# of images CPU time Memory req.

N= 1,000 ... ~7min (~100MB)
N =10,000 ... ~1h7min  (~ 1GB)

N = 107 ~115days (~ 1TB)

iéome) Images on Facebook:
N=1010 ... ~300years (~ 1PB)




Nearest-neighbor matching

Solve following problem for all feature vectors, x;, in the query image:
Vi NN(j) = arg miin [|x; — x|

where x; are features in database images.

Nearest-neighbour matching is the major computational bottleneck

« Linear search performs dn operations for n features in the
database and d dimensions

 No exact methods are faster than linear search for d>10

« Approximate methods can be much faster, but at the cost of
missing some correct matches



Finding approximate nearest neighbour vectors

« Approximate method is not guaranteed to find the nearest
neighbour.

« Can be much faster, but at the cost of missing some nearest
matches
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Approximate nearest neighbor search

Best-Bin First (BBF), a variant of k-d trees
that uses priority queue to examine most
promising branches first

[Beis & Lowe, CVPR 1997]

Extended to multiple randomized trees in :
[Muja & Lowe, 2009]

0011, 0111 111

: () Locality-Sensitive Hashing (LSH), a
B . 010 o [ randomized hashing technique using
I~ = |“ hash functions that map similar points
of = = : to the same bin, with high probability
wo | o .l [Indyk & Motwani, 1998]

1100

(3) 4)
Can reduce the complexity of the search, e.g. O(log N) for k-d tree.

But at the cost of missing some nearest matches. Adapted from K. Grauman, B. Leibe



K-d tree

« K-d tree is a binary tree data structure for organizing a set of points in

a K-dimensional space.

« Each internal node is associated with an axis aligned hyper-plane

splitting its associated points into two sub-trees.

* Dimensions with high variance are chosen first.

* Position of the splitting hyper-plane is chosen as the mean/median of

the projected points — balanced tree.

3e

o4

Se

°o?

Ge

Le

o’/

9 el

oll

7

Images: Anna Atramentov




K-d tree construction

Simple 2D example
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Slide credit: Anna Atramentov



KD-tree: Properties

* Binary tree of depth O(log(n))
« Total nodes: (2n -1) (n-1 internal and n leaves)
« Construction time: O(n d log(n))
 Memory requirements:
« nonleaf node — (dim, threshold)
* Leaf node: data id
* Need to also store the original data



K-d tree query
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K-d tree: Backtracking

Backtracking is necessary as the true nearest neighbor
may not lie in the query cell.

But in some cases, almost all cells need to be inspected.

Figure: A. Moore



Solution: Approximate nearest neighbor K-d tree

1 H I T : T . :
Key Ideas: gData points;
i é Juery point; +

0.8 | Remaining search hypersphere;

» Search k-d tree bins in order
of distance from query 06 lo K—\)

* Requires use of a priority 0.4 |

queue %
02 F o '

 Limit the number of | |
neighbouring k-d tree bins to 0 . | . o |
explore: only approximate NN ' - :
Is found

* Reduce the boundary effects by randomization



Randomized K-d trees

. How to choose the dimension to split and the splitting point?
 Pick dimension with the highest variance
« Split at the mean/median

« Multiple randomized trees increase the chances of finding
nearby points

True nearest
neighbour ——
X

/v X X X
]
[ ] L O

Query point

True nearest
neighbour found? No No

[Silpa-Anan and Hartley 2008, Philbin et al. 2007]



Approximate NN search using a randomized forest
of K-d trees: Algorithm summary

1. Descent all (typically 8) trees to the leaf node

2. Search k-d tree bins in order of distance from query

« Distance between the query and the bin is defined as the minimum
distance between the query and any point on the bin boundary

* Requires the use of a priority queue:

> During lookup an entry is added to the priority queue about the option
not taken

> For multiple trees, the queue is shared among the trees

« Limit the number of neighbouring K-d tree bins to explore
(parameter of the algorithm, typically set to 512)



Randomized K-d trees: discussion

* Find approximate nearest neighbor in O(logN) time,
where N is the number of data points.

* |Increased memory requirements: needs to store multiple
(~8) trees

« Good performance in practice for recognition problems
(NN-search for SIFT descriptors and image patches).

 Code available online:
http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN



Indexing local features:
approximate nearest neighbor search
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Best-Bin First (BBF), a variant of k-d

trees that uses priority queue to
examine most promising branches
first [Beis & Lowe, CVPR 1997]
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Locality-Sensitive Hashing (LSH), a
randomized hashing technique using
hash functions that map similar
points to the same bin, with high
probability [Indyk & Motwani, 1998]




Locality Sensitive Hashing (LSH)

ldea: construct hash functions g: R4—Z* such that

for any points p,q:

b

If ||p-q|| =1, then Pr[g(p)=g(q)] is “high” or “not-so-small
If ||p-q|| > cr, then Pr[g(p)=g(q)] is “small”

Example of g: linear projections

g(p)=<h4(p),h2(p),....hk(p)>, where hx,b(p)=l(p*X+b)/wJ

H is the “floor” operator.

X; are sampled from a Gaussian.

w is the width of each quantization bin.

b is sampled from uniform distr. [0,w]. [Datar-Immorlica-Indyk-Mirrokni’04]



Locality Sensitive Hashing (LSH)

« Choose a random projection

« Project points C@:

. Points close in the original space e
remain close under the projection s
~ Gs;:

« Unfortunately, converse not true

. Answer: use multiple quantized projections which define a
high-dimensional “grid”

Slide: Philbin, Chum, Isard, Zissrman



Locality Sensitive Hashing (LSH)

« Cell contents can be efficiently
Indexed using a hash table

« Repeat to avoid quantization errors
near the cell boundaries

. Point that shares at least one cell = potential candidate

« Compute distance to all candidates

Slide: Philbin, Chum, Isard, Zissrman



LSH: discussion
In theory, query time is O(kL), where k is the number of projections and L is the
number of hash tables, i.e. independent of the number of points, N.

In practice, LSH has high memory requirements as large number of
projections/hash tables are needed.

Code and more materials available online:
http://www.mit.edu/~andoni/LSH/

Hashing functions could be also data-dependent (PCA) or learnt from labeled

point pairs (close/far).
Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008.
R. Salakhutdinov and G. Hinton, “Semantic Hashing,” ACM SIGIR, 2007.

See also:
http://cobweb.ecn.purdue.edu/~malcolm/yahoo Slaney2008(LSHTutorialDraft).pdf

http://www.sanjivk.com/EECS6898/ApproxNearestNeighbors 2.pdf



http://www.mit.edu/~andoni/LSH/
http://cobweb.ecn.purdue.edu/~malcolm/yahoo/Slaney2008(LSHTutorialDraft).pdf
http://www.sanjivk.com/EECS6898/ApproxNearestNeighbors_2.pdf

Comparison of approximate NN-search methods

Dataset: 100K SIFT descriptors

T T

—&O— k—means tree - sift 100K
—%— rand. kd-trees - sift 100K
—&— ANN - sift 100K

—6— LSH - sift 100K

Speedup over linear search
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Correct

80 90
neighbors (%)

100

Code for all methods available online, see Muja&Lowe’09

Figure: Muja&Lowe’09



Approximate nearest neighbour search (references)

J. L. Bentley. Multidimensional binary search trees used for associative searching.
Comm. ACM, 18(9), 1975.

Freidman, J. H., Bentley, J. L., and Finkel, R. A. An algorithm for finding best matches in
logarithmic expected time. ACM Trans. Math. Softw., 3:209-226, 1977.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. An optimal

algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of
the ACM, 45:891-923, 1998.

C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast image descriptor matching. In
CVPR, 2008.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm
configuration. In VISAPP, 2009.

P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse
of dimensionality,” in Proc. of 30th ACM Symposium on Theory of Computing, 1998

G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with parameter-
sensitive hashing,” in Proc. of the IEEE International Conference on Computer Vision,
2003.

R. Salakhutdinov and G. Hinton, “Semantic Hashing,” ACM SIGIR, 2007.
Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008.



ANN - search (references continued)

O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash and tf-
idf weighting. BMVC., 2008.

B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scalable image
search,” Proc. of the IEEE International Conference on Computer Vision, 2009.

J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for scalable image
retrieval,” in CVPR, 2010.

H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search.
PAMI, 2011.

A.Gordo and F.Perronnin. Asymmetric distances for binary embeddings. CVPR, 2011.

Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning
binary codes. CVPR, 2011.

A. Babenko and V. Lempitsky. The inverted multi-index. CVPR, 2012.

T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization for approximate nearest
neighbor search. CVPR, 2013.

T. Norouzi and D. Fleet, Cartesian k-means., CVPR, 2013

See tutorial at CVPR’13 by H. Jegou: https://sites.google.com/site/lsvr13

Code: https://github.com/facebookresearch/faiss



https://sites.google.com/site/lsvr13
https://github.com/facebookresearch/faiss

Outline — Efficient visual search

1. Efficient matching of local descriptors
- Approximate nearest neighbor search
- k-d trees, locality-sensitive hashing (LSH)

2. Aggregate local descriptors into a single vector
- Bag-of-visual-words, inverted files, query expansion

3. Compact representations for very large-scale search
- Product quantization (PQ)

4. Learnable representations
- Neural representations for large-scale visual search
- Visual search using natural language query




So far ...

Linear exhaustive search can be prohibitively expensive
for large image collections

* Answer (so far): approximate NN search methods
 Randomized KD-trees
» Locality sensitive hashing

 However, memory footprint can be still high.

Example: N = 107 images, 10'° SIFT features with 128B
per feature ——> 1TB of memory

Look how text-based search engines (Google) index
documents — inverted files.



Indexing text with inverted files

Document
collection:

d3 d4
common
common people sculpture common
sculpture
sculpture common
people people
common sculpture people
common
Inverted file: Term List of hits (occurrences in documents)

People [d1:hit hit hit], [d4:hit hit] ...
Common  [d1:hit hit], [d3: hit], [d4: hit hit hit] ...
Sculpture  [d2:hit], [d3: hit hit hit] ...

Need to map feature descriptors to “visual words”.



Build a visual vocabulary

128D descriptor space 128D descriptor space

Vector quantize descriptors
- Compute SIFT features from a subset of images
- K-means clustering (need to choose K)

[Sivic and Zisserman, ICCV 2003]



Visual words

Example: each group
of patches belongs to
the same visual word

128D descriptor space




Samples of visual words (clusters on SIFT descriptors):

More specific example



Samples of visual words (clusters on SIFT descriptors):

ﬂ------
---

A

More specific example



Visual words

* First explored for texture and
material representations

» Texton = cluster center of
filter responses over collection
of images

* Describe textures and
materials based on distribution
of prototypical texture
elements.

Leung & Malik 1999; Varma &
Zisserman, 2002; Lazebnik,
Schmid & Ponce, 2003;

Slide: Grauman&Leibe



Visual words: quantize descriptor space
Sivic and Zisserman, ICCV 2003

Nearest neighbour matching o
° expensiveto - N
do for all frames e T -
S 0 /S S o0/
Image 1 128D descriptor Image 2

space



Visual words: quantize descriptor space
Sivic and Zisserman, ICCV 2003

Nearest neighbour matching o
° expensiveto - Se VRN
do for all frames P -
Image 1 128D descriptor Image 2
space
Vector quantize descriptors
3
42 \ @
S
> 05 )/ 220/
Image 1 128D descriptor Image 2

space



Visual words: quantize descriptor space
Sivic and Zisserman, ICCV 2003

Nearest neighbour matching o
° expensiveto - i BRI
do for all frames P -
A///,<:> 0 A//// ////' ) C) ////
|mage 1 128D descriptor |mage 2
space
Vector quantize descriptors
3
42 \ @
S
oSN foo 08/ 220/
New image Image 1 128D descriptor Image 2

space



Visual words: quantize descriptor space
Sivic and Zisserman, ICCV 2003

Nearest neighbour matching o
° expensiveto - N
do for all frames e T -
S 0 /S S o0/
Image 1 128D descriptor Image 2
space

Vector quantize descriptors

2SS f= 05/

New image Image 1 128D descriptor Image 2
space




Vector quantize the descriptor space (SIFT)

42
N2y

The same visual word



Representation: bag of (visual) words

Visual words are ‘iconic’ image patches or fragments
* represent their frequency of occurrence
* but not their position

Image Colelction of visual words



Offline: Assign visual words and compute
histograms for each image

42 \@ 5

Normalize Compute SIFT
patch descriptor

1
Find nearest
cluster center

Detect patches

a

: 2O 00N

\ /
Represent image as a

sparse histogram of visual
word occurrences



Offline: create an index

Word  Posting
number list

(1)— 510 ...
2| 10..

frame #5 frame #10
./

 For fast search, store a “posting list” for the dataset
* This maps visual word occurrences to the images they occur in

(i.e. like the “book index”)



At run time

Word  Posting
number list

(1 Y— 510, ...
2 10..

frame #5 frame #10

\ J
* User specifies a query region
« Generate a short-list of images using visual words in the region
1. Accumulate all visual words within the query region
2. Use “book index” to find other frames with these words

3. Compute similarity for images which share at least on word



At run time

Word  Posting
number list

(1 Y— 510, ...
2 10..

frame #5 frame #10

N

« Score each image by the (weighted) number of common
visual words (tentative correspondences)

» Worst case complexity is linear in the number of images N

* In practice, it is linear in the length of the lists (<< N)



Bags of visual words

Summarize entire image based
on its distribution (histogram) of

: - — 4
visual word occurrences. Th W=
A
Analogous to bag of words x
representation commonly used
for text documents. oo o
L £ ¢ 4
A &
T N t /
d =|...lo1]...]2]0]...
Hofmann 2001

Slide: Graumané&Leibe, Image: L. Fei-Fei



Another interpretation: the bag-of-visual-words model

For a vocabulary of size K, each image is represented by a K-vector

Vi = (tl,...,ti,...,tK)T

where t; is the number of occurrences of visual word .

Images are ranked by the normalized scalar product between the query
vector v, and all vectors in the database vy:

. Vi | V.
i iF
| vl |lvall

Scalar product can be computed efficiently using inverted file.

What if vectors are binary? What is the meaning of VqTVd ?
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Strategy |. Efficient approximate NN search

Local features

invariant
descriptor
vectors

>

Images

invariant
descriptor
vectors

>

Compute local features in each image independently (offline)

“Label” each feature by a descriptor vector based on its intensity (offline)

Finding corresponding features is transformed to finding nearest neighbour vectors
Rank matched images by number of (tentatively) corresponding regions

Verify top ranked images based on spatial consistency.



Strategy Il: Match histograms of visual words

- invariant _ Sinal t
regions _ Quantize ingle vector
descriptor (histogram)
vectors
[ | =
frames _

}

Compute affine covariant regions in each frame independently (offline)

“Label” each region by a vector of descriptors based on its intensity (offline)

Build histograms of visual words by descriptor quantization (offline)

Rank retrieved frames by matching vis. word histograms using inverted files.
Verify retrieved frame based on spatial consistency.

SARE o



Overview of the retrieval system

. Set of SIFT
queryimagé  [Lowe04, Mikolajczyk07] descriptors  [Sivic03, Philbin07]

sparse frequency vector

Clustered and
quantized to —>I_- - NN
visual words

Hessian-Affine
regions + SIFT
descriptors

tf-idf weighting

Inverted Sllerin
file W 9

Results

€=

Ge.o.me’fric Rankgd short-list of
verification images

[Lowe04, Philbin07]




Visual search using local regions (references)

C. Schmid, R. Mohr, Local Greyvalue Invariants for Image Retrieval, PAMI, 1997

J. Sivic, A. Zisserman, Text retrieval approach to object matching in videos, ICCV,
2003

D. Nister, H. Stewenius, Scalable Recognition with a Vocabulary Tree, CVPR,
2006.

J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman, Object retrieval with large
vocabularies and fast spatial matching, CVPR, 2007

O. Chum, J. Philbin, M. Isard, J. Sivic, A. Zisserman, Total Recall: Automatic
Query Expansion with a Generative Feature Model for Object Retrieval, ICCV,
2007

H. Jegou, M. Douze, C. Schmid, Hamming embedding and weak geometric
consistency for large scale image search, ECCV’2008

O. Chum, M. Perdoch, J. Matas: Geometric min-Hashing: Finding a (Thick) Needle
in a Haystack, CVPR 2009

H. Jégou, M. Douze and C. Schmid, On the burstiness of visual elements, CVPR,
2009



Visual search using local regions (references)

T. Turcot and D. G. Lowe. Better matching with fewer features: The selection of
useful features in large database recognition problems. In ICCV Workshop on
Emergent Issues in Large Amounts of Visual Data (WS-LAVD), 20009.

H. Jégou, M. Douze, C. Schmid and P. Pérez, Aggregating local descriptors into a
compact image representation, CVPR 2010

A. Mikulik, M. Perdoch, O. Chum, J. Matas, Learning a fine vocabulary, ECCV
2010.

O. Chum, A. Mikulik, M. Perdoch, J. Matas, Total recall Il: Query expansion
revisited, CVPR 2011

D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van Gool. Hello neighbor:
accurate object retrieval with k-reciprocal nearest neighbors. CVPR, 2011.

R. Arandjelovic and A. Zisserman. Three things everyone should know to improve
object retrieval. In CVPR, 2012.

R. Arandjelovi¢, A. Zisserman. DisLocation: Scalable descriptor distinctiveness for
location recognition, In Asian Conference on Computer Vision, 2014

G. Tolias, Y. Avrithis, H. Jégou. Image search with selective match kernels:

aggregation across single and multiple. International Journal of Computer
Vision, 2016



Efficient visual search for objects and places

Oxford Buildings Search - demo

http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index
.ntml



http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index.html
http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index.html

Example




Search results 1 to 20 of 104844

ID: oxc1_hertford_000011

Score: 1816.000000

Putative: 2325

Inliers: 1816

Hypothesis: 1.000000 0.000000 0.000015 0.000000 1.000000 0.000031
Detail

ID: oxc1_all_souls_000075

Score: 352.000000

Putative: 645

Inliers: 352

Hypothesis: 1.162245 0.041211 -70.414459 -0.012913 1.146417 91.276093
Detail

ID: oxc1_hertford_000064

Score: 278.000000

Putative: 527

Inliers: 278

Hypothesis: 0.928686 0.026134 169.954620 -0.041703 0.937558 97.962112
Detail




ID: oxc1_oxford_001612

Score: 252.000000

Putative: 451

Inliers: 252

Hypothesis: 1.046026 0.069416 51.576881 -0.044949 1.046938 76.264442
Detail

ID: oxc1_hertford_000123

Score: 225.000000

Putative: 446

Inliers: 225

Hypothesis: 1.361741 0.090413 -34.673317 -0.084659 1.301689 -
32.281090

ID: oxc1_oxford_001085

Score: 224.000000

Putative: 389

Inliers: 224

Hypothesis: 0.848997 0.000000 195.707611 -0.031077 0.895546
114.583961

ID: oxc1_hertford_000077

Score: 195.000000

| Putative: 386

Inliers: 195

Hypothesis: 1.465144 0.069286 -108.473091 -0.097598 1.461877 -
30.205191




Oxford buildings dataset

. Automatically crawled from flickr

. Consists of:

Dataset | Resolution | # images # features | Descriptor size
i 1024 x 768 5,062 16,334,970 1.9 GB

ii 1024 x 768 99,782 277,770,833 33.1 GB

iii 500 x 333 | 1,040,801 | 1,186,469,709 141.4 GB
Total 1,145,645 | 1,480,575,512 176.4 GB




Oxford buildings dataset

« Landmarks plus queries used for evaluation

Magdalen "

Bodleian University i

Museum
Thom

Radcliffe
Camera

« Ground truth obtained for 11 landmarks

. Evaluate performance by mean Average Precision



Measuring retrieval performance: Precision - Recall

 Precision: % of returned images that Q
are relevant O

» Recall: % of relevant images that are O

returned O

b ¢ r
ﬂ/t\ relevant returned
iImages images
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o
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precision
o
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Average Precision

e,

o
o

* A good AP score requires both
high recall and high precision

« Application-independent

precision
o
=Y

0 0.2 0.4 0.6 0.8 1
recall

Performance measured by mean Average Precision (mAP)
over 55 queries on 100K or 1.1M image datasets



Query: ChristChurch3

— |——Before re-ranking
— After re—ranking
0.8
S 0.67
(%
&)
o
o 0.4f
0.2}
O I L 1 1
0 0.2 0.4 0.6 0.8

Recall



Mean Average Precision variation with vocabulary size

vocab bag of

: spatial
Size words
50K 0.473 0.599
100K 0.535 0.597
250K 0.598 0.633
500K 0.606 0.642
/750K 0.609 0.630 05l |
1M 0.618 0.645 H -+-Bag of words
——Spatial

Vocabulary Size % 10°



Query images rec. [ 1T
% 0.2

* high precision at low recall (like google)
« variation in performance over query

* none retrieve all instances



Visual search (references)

G. Tolias, Y. Avrithis, H. Jégou. Image search with selective match kernels:

aggregation across single and multiple. International Journal of Computer
Vision, 2016

G Tolias, R Sicre, H Jégou, Particular object retrieval with integral max-pooling of

CNN activations, International Conference on Learning Representations (ICLR)
2016

F Radenovi¢, G Tolias, O Chum, CNN Image Retrieval Learns from BoW:
Unsupervised Fine-Tuning with Hard Examples, European Conference on
Computer Vision (ECCV) 2016.

F Radenovi¢, A Iscen, G Tolias, Y Avrithis, O Chum. Revisiting oxford and paris:
Large-scale image retrieval benchmarking, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018.



Why aren’t all objects retrieved?

query image

[Lowe04, Mikolajczyk07]

Hessian-Affine regions +
SIFT descriptors

Set of SIFT
descriptors

[Sivic03, Philbin07]
Clustered and

visual words

sparse frequency vector

— quantized to —)I ] =

Obtaining visual words is like a sensor measuring the image

“noise” in the measurement process means that some visual
words are missing or incorrect, e.g. due to

* Missed detections

« Changes beyond built in invariance

* Quantization effects

1. Query expansion
2. Better quantization

Consequence: Visual word in query is missing in target image




Query Expansion in text

In text :
* Reissue top n responses as queries
« Pseudo/blind relevance feedback
« Danger of topic drift

In vision:
* Reissue spatially verified image regions as queries



Query Expansion: Text

Original query: Hubble Telescope Achievements

Query expansion: Select top 20 terms from top 20 documents according to tf-idf

Added terms: Telescope, hubble, space, nasa,
ultraviolet, shuttle, mirror, telescopes,
earth, discovery, orbit, flaw, scientists,
launch, stars, universe, mirrors, light,
optical, species

Example from: Jimmy Lin, University of Maryland



Automatic query expansion

Visual word representations of two images of the same
object may differ (due to e.g. detection/quantization noise)
resulting in missed returns

Initial returns may be used to add new relevant visual words
to the query

Strong spatial model prevents ‘drift’ by discarding false
positives

[Chum, Philbin, Sivic, Isard, Zisserman, ICCV’07;
Chum, Mikulik, Perdoch, Matas, CVPR’11]



Visual query expansion - overview

1. Original query




Query Expansion

Query Image Originally retrieved image Originally not retrieved

e X



Query Expansion




Query Expansion




Query Expansion




Query Image

New expanded query is formed as

Query Expansion

Spatially verified retrievals with matching regions overlaid

ST ¥ ]
B N § .
gy (s ! I8 . AL
‘N | i Y $i8 10
L [ AL | [
i oy L A\ 1
[ {
© d \ e o
. y vutay ENes
| {i

New expanded query

« the average of visual word vectors of spatially verified returns

* only inliers are considered

* regions are back-projected to the original query image



Demo



Query Expansion

Query image Originally retrieved Retrieved only
after expansion







Beyond query expansion — image region graphs

Efficient Diffusion on Region Manifolds:
Recovering Small Objects with Compact CNN
Representations

Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, Teddy Furon, Ondfej Chum

& o, U8 :l.' o.. .'.
AR T
%;o t’d‘
° :... L4 :‘
£ 1:%’::"}0
(a) dataset (b) single query (c) multiple queries

[Iscen et al., CVPR 2017]
https://cmp.felk.cvut.cz/~iscenahm/_pages/diffusion.html



Quantization errors

Typically, quantization has a significant impact on the final
performance of the system [Sivic03,Nister06,Philbin07]

Quantization errors split features that should be grouped
together and confuse features that should be separated
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Voronoi
cells




Overcoming quantization errors

« Soft-assign each descriptor to multiple cluster centers
[Philbin et al. 2008, Van Gemert et al. 2008]

[ B: 1 O] Hard Assignment

—

[A: 0.1 ]
B: 0.5 | SoftAssignment
C:04

Learning a vocabulary to overcome quantization errors
[Mikulik et al. ECCV 2010, Philbin et al. ECCV 2010]



Beyond bag-of-visual-words |.

Hamming embedding [Jegou&Schmid 2008]

« Standard quantization using bag-of-visual-words

« Additional localization in the Voronoi cell by a binary
signature




Beyond bag-of-visual-words II.

Locality-constrained linear coding.
[Wang et al. CVPR 2010]

- Represent data point as a linear combination of nearby
cluster centers.

- Store the coefficients of linear combination.

Used for category-level classification.

Connection to sparse coding -
more at lecture by J. Ponce

M



Beyond bag-of-visual-words llI.

VLAD - Vector of locally aggregated descriptors
[Jegou et al. 2010] but see also [Perronin et al. 2010]

Measure (and quantize) the difference vectors from the
cluster center.




Outline — Efficient visual search

1. Efficient matching of local descriptors
- Approximate nearest neighbor search
- k-d trees, locality-sensitive hashing (LSH)

2. Aggregate local descriptors into a single vector
- Bag-of-visual-words, inverted files, query expansion

3. Compact representations for very large-scale search
- Product quantization (PQ)

4. Learnable representations
- Neural representations for large-scale visual search
- Visual search using natural language query




Towards very large-scale image search

 BOF+inverted file can handle up to ~10 millions images
— with a limited number of descriptors per image > RAM: 40GB
— search: 2 seconds

 Web-scale = billions of images

— with 100 M per machine - search: 20 seconds, RAM: 400 GB
— not tractable

« Solution: represent each image by one compressed vector

Slide credit: C. Schmid



Strategy |: Efficient approximate NN search

Local features

invariant
descriptor
vectors

invariant
descriptor
vectors




Strategy |l: Match histograms of visual words

regions ;nvar.iant Quantize Single vector
escriptor (histogram)
vectors
frames
o =

}




Strategy |lI: Match

regions

compressed vectors

descriptor

vectors

}

¥
}

Aggregate
into a single
vector

Compress

=

Slide credit: C. Schmid



Compact image representation

e Aim: improving the tradeoff between
search speed
memory usage
search quality

e Approach: joint optimization of three stages

descriptor aggregation
dimension reduction
indexing algorithm

| Descript Descript (Non) -
mage — escriptor N escriptor 5| exhaustive
representation aggregation Compression search
Local features BOW PCA + Approx. nearest neighbor
CNN descriptors VLAD PQ codes Inverted files

Slide credit: C. Schmid



Product quantization for nearest neighbor search

e Vector split into m subvectors: y — [y1! e |ym}

e Subvectors are quantized separately by quantizers ¢(y) = [¢1(y1)|- - - |@m (Ym)]
where each q; is learned by k-means with a limited number of centroids

e Example: y = 128-dim vector split in 8 subvectors of dimension 16

each subvector is quantized with 256 centroids -> 8 bit
very large codebook 256”8 ~ 1.8x10*9

16 components

p A
Y1 Yo Y3 Y4 Y5 Ye Y7 Ys
() O ()

centroids © B s s

\/ \/ \/ \/
di(y1) qa(y2) d3(y3) q4(Y4) ds(ys) d6(Ys) d7(y7) ds(ys)

ﬁ_}
8 bits

= 8 subvectors x 8 bits = 64-bit quantization index

[Jegou, Douze, Schmid, PAMI’11] Slide credit: C. Schmid



Product quantization

k-means | PQ | OoPQ

PQ: Product quantization, H. Jegou, M. Douze and C. Schmid, TPAMI 2011
OPQ: Optimized Product Quantization, by Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun, TPAMI, 2013.

FAISS library for efficient indexing
https://github.com/facebookresearch/faiss

Image credit: K. He
http://kaiminghe.com/cvpr13/index.html


http://kaiminghe.com/publications/pami13opq.pdf
https://github.com/facebookresearch/faiss

Outline — Efficient visual search

1. Efficient matching of local descriptors
- Approximate nearest neighbor search
- k-d trees, locality-sensitive hashing (LSH)

2. Aggregate local descriptors into a single vector
- Bag-of-visual-words, inverted files, query expansion

3. Compact representations for very large-scale search
- Product quantization (PQ)

4. Learnable representations
- Neural representations for large-scale visual search
- Visual search using natural language query




Beyond local invariant features:
What objects/scenes local regions do not work on”?




What objects/scenes local regions do not work on?

E.g. texture-less objects, objects defined by shape, deformable

objects, wiry objects.



(h)

(9)

(f)

()

(k)

()

(i)



Other types of objects

Visual search for texture-less, wiry, deformable and 3D
objects..

See e.g.
Where to buy it: Matching street clothing photos in online shops, M Hadi Kiapour, X Han, S
Lazebnik, AC Berg, TL Berg, ICCV 2015.



Other types of appearance variations

Match objects across large changes of appearance
Examples: non-photographic depictions, degradation
over time, change of season, change of illumination, ...




Extreme viewpoint changes

-
A

-

[Lin et al., CVPR'15]

See also: [Bansal et al.’11, Shan et al.’14 ]



Changes over time

See also: e.g. Perdoch et al.’15, Fernando et al.’14, Schindler et al.’06, Martin-
Buralla’15, Matzen&Snavely’14



Example |.: Localize non-photographic
depictions

Inputs: paintings, drawings,

historical photographs, Output: recovered artist/camera
reference 3D model viewpoints

[Aubry, Russell, Sivic, 2013]
http://www.di.ens.fr/willow/research/painting_to 3d/
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Example: Visual localization in indoor
environments

[Taira et al., CVPR 2018]




Visual localization indoors
[Taira et al., CVPR 2018]




Solution: Learn neural distance functions

The same
location

Different
location

Neural
network f(x)

Neural
network f(x)

Neural

) network f(x)

The same neural network

Joint
embedding
space f(x)

Can be efficienty
indexed using
kd-trees, LSH,

PQ ...

See also [Miech et al., 1706.06905, 1804.02516], and e.g. [Frome et al., NIPS 2013] [Gong et al., IUCV 2014]




Use learnt f(x) for efficient retrieval

Neural

A ———) nctvork i)

Query

V7 %,’;’;Zlé‘gti\t\:
1O Joint
embedding

space f(x)

Find an image from the database that has the smallest
distance in the learnt embedding space f(x)

Can be efficienty
indexed using
kd-trees, LSH,

PQ ...

| By

Y

ke T
Database of images from different locations

4 \a B . WE 1 il
T il s A



Example: Visual localization in changing conditions

» [Sattler et al., arXiv:1707.09092]




Why is it difficult?

Lighting changes: Different time of day / year

e Changes in camera viewpoint
e Occluders and ambiguous objects: People, cars, trees, pavement...

e Big data: World-scale localization




Why is it difficult?

Lighting changes: Different time of day / year

e Changes in camera viewpoint ‘

e Occluders and ambiguous objects: People, cars, trees, pavement...

Big data: World-scale localization




Why is it difficult?

e Lighting changes: Different time of day / year

e Changes in camera viewpoint

e Occluders and ambiguous objects: People, cars, trees, pavement...‘

Big data: World-scale localization




Why is it difficult?

Changes in camera viewpoint

Lighting changes: Different time of day / year

Occluders and ambiguous objects: Trees, cars, pavement...

Big data: World-scale

localization
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The approach: visual instance recognition

Represent the world by a set of

eotagged images
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The approach: visual instance recognition

Geotagged image database

Design an “image

representation” exfractor

Transfer GPS

Image representation space



Results on standard retrieval benchmarks

- Test our network on a related task: specific image/object retrieval
- Sets the new state-of-the-art for compact image representations
(256-D) on all 3 datasets

BiE i N AN
.  RELPpS! A low u

Holidays

Ours

e T | foropy | fuly | (orop) | (origina | (rotated)
e 47.2 65.7 | 65.7
Gordo et al. CVPR12 78.3

Razavian et al. ICLR15 53.3 67.0 74 .2

LempitskyiCovis | 559 80.2
NetVLAD off-the-shelf 53.4 64.3 67.7 82.1 86.0
NetVLAD trained 62.5 - i 73.5 79 9 84 3

[Radenovic et al. arXiv 16,

Gordo et al. arXiv 16] I




Example result

Query image Top retrieved image




References learnable representations for large-
scale matching

Example: Visual place recognition
R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla and J. Sivic

NetVLAD: CNN architecture for weakly-supervised place recognition,
CVPR 2016.

See also:

A. Gordo, J. Almazan, J. Revaud, D. Larlus. Deep Image Retrieval:
Learning global representations for image search, ECCV 2016

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns
from BoW: Unsupervised Fine-Tuning with Hard Examples, ECCV

2016




But also: learn joint video and text embedding

Video
network

Joint
Embedding

Text

... the pot can then be filled with water and the ... —— network

Text

... you just cook the meat for 3 hrs ... —)) network

See also [Miech et al., 1706.06905, 1804.02516], and e.g. [Frome et al., NIPS 2013] [Gong et al., IUCV 2014]



Example loss function: Max-margin triplet loss
Sz',j — S(X“}/]) (dot product)

We want: V(27])7 ] # i, Sz',i > SZ,]
7Sz',z' > Sj,z’

max(0,m-+ 5 ;) +max(0, m+5,-5;,)|
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: . _ _ ... you just cook the meat
... filled with water ... ... filled with water ... for 3 hrs ...
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Example loss function: Max-margin triplet loss
Si,j — S(X27Y7) (dot product)

wewant: /(4,7), J 7 & Sii > Sij

B
1 N\ N\
L = E >4 >4 {max((), m+Sz-,j—SZ-,7;)—|—maX(0, m‘|‘Sj,z’_Sfé,i)}
1=1 51

... filled with water ... ... filled with water ...




Example loss function: Max-margin triplet loss
Si,j — S(X“YL;) (dot product)

wewant: /(4,7), J 7 & Sii > Sij
, 955 > 9

B
1 N\ N\
L = E >4 >4 {max((), m+Si,j—SZ-,7;)—|—maX(0, m‘|‘Sj,i_Sfé,i)}
1=1 51

... you just cook the meat
for 3 hrs ...

... filled with water ...




How to do anything... o}

We're trying to help everyone on the planet
learn how to do anything.Join us

Join wikiHow
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Have an account? Log in
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Going WikiHow scale — the HowTo100M dataset

23K tasks o 1 3M wdeos . 130M chp-captlon pairs

B ™~
!'ﬂ.l", o s
A
: VS
two stitches on two by skipping the first to get pepper some the seasonings we
and we'll slip stitch three stitches garlic powder and put together we're e |
R
N
. ; ? Ve
two stitchesontwo  stitch and just going garlic no Camino  a lttle black pepper
and we’'ll slip stitch to Mariel all the way the garlic powder and some seasalt
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[Miech, Zhukov, Alayrac, Tapaswi, Laptev and Sivic, ICCV 2019]



Going WikiHow scale
HowTo100M dataset

Dataset Clips Captions Videos Duration Source Year
Charades [42] 10k 16k 10,000 82h  Home 2016
MSR-VTT [32] 10k 200k 7,180 40h Youtube 2016
YouCook?2 [61] 14k 1dk 2,000 176h Youtube 2018
EPIC-KITCHENS [5] 40k 40k 432 55h  Home 2018
DiDeMo [11] 27k 41k 10,464 87h  Flickr 2017
M-VAD [46] 49k 56k 92 84h Movies 2015
MPII-MD [37] 69k 68k 04 41h Movies 2015
ANet Captions [22] 100k 100k 20,000 849h Youtube 2017
TGIF [23] 102k 126k 102,068 103h  Tumblr 2016
LSMDC [38] 128k 128k 200 150h Movies 2017
How?2 [39] 185k 185k 13,168 298h Youtube 2018
HowTol100M 136M 136M 1.221M 134,472h Youtube 2019

23K tasks « 1.3M videos « 130M clip-caption pairs



Examples of top 4 clip retrieval results given a

language query using our model on HowTo100M




Summary — Efficient visual search

1. Efficient matching of local descriptors
- Approximate nearest neighbor search
- k-d trees, locality-sensitive hashing (LSH)

2. Aggregate local descriptors into a single vector
- Bag-of-visual-words, inverted files, query expansion

3. Compact representations for very large-scale search
- Product quantization (PQ)

4. Learnable representations
- Neural representations for large-scale visual search
- Visual search using natural language query



Internships abroad:
ELLIS Unit Prague (ellisprague.eu)
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unit

Join us

We are looking for strongly motivated students with an interest in applying
machine learning to computer vision, robotics and more broadly artificial
intelligence.

Internships and thesis projects can lead to a PhD in the ELLIS Unit at CIIRC in
Prague with the possibility of spending part of the time at other Units in the
ELLIS network.
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Internships abroad:
ELLIS Unit Prague (ellisprague.eu)
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unit ‘

Join us

We are looking for strongly motivated students with an interest in applying

Analysis of Molecular
Dynamic Simulations for
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Networks

Supervisors
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Generative models for robot
motion representation

Supervisors
Mederic Fourmy, Vladimir Petrik, Josef Sivic
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Mederic Fourmy, Vladimir Petrik, Josef Sivic

Motivation
Object 6D pose estimation and tracking are
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Learning Local Features from
Generative Image Models

Supervisors
Torsten Sattler

Motivation

Local features play an important role in
many 3D computer vision algorithms,
including visual localization and Structure-

JOIN US



Internships abroad:

ELLIS Unit Prague (ellisprague.eu)

Generating ,,Realistic*“ Camera
Views of 3D Models

Supervisors
Torsten Sattler

Motivation

Modern deep-based computer vision
approaches, e.g., local features, 3D
reconstruction, etc., need large amounts of
training data. Often, such methods need
annotations that are expensive to obtain
from real-world images, e.g., accurate scene
geometry, pixel-level correspondences
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Learning to solve multiple-
view geometry
in Computer Vision

Supervisors
Tomas Pajdla

Motivation

We aim at using machine learning to
address long-standing problems in multiple
view geometry that traditional techniques
cannot solve. Previous methods for
computing camera geometry from image
matches can coped efficiently with only

Machine learning for the
design of protein-protein
interactions

Supervisors

Anton Bushuiev, Roman Bushuiev, Petr
Kouba, Jiri Sedlar, Jiri Damborsky, Stanislav
Mazurenko, Josef Sivic

Motivation

Proteins are large molecules that drive
nearly all processes in living cells. The
analysis of protein-protein interactions
(PPIs) and their design unlocks application



Internships abroad:
ELLIS Unit Prague (ellisprague.eu)
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Join us

We are looking for strongly motivated students with an interest in applying
machine learning to computer vision, robotics and more broadly artificial
intelligence.

Internships and thesis projects can lead to a PhD in the ELLIS Unit at CIIRC in
Prague with the possibility of spending part of the time at other Units in the
ELLIS network.

Possibility of a joint Phd with the Willow team in Paris or
other ELLIS Units across Europe

(see “ellis.eu/units” and “ellis.eu/phd-postdoc”).

Contact: josef.sivic@cvut.cz / josef.sivic@inria.fr
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ELLIS Phd with two advisors in Europe
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ELLIS - the European Laboratory for Learning and Intelligent Systems - is a pan-European Al network of
excellence which focuses on fundamental science, technical innovation and societal impact. Founded in 2018,
ELLIS builds upon machine learning as the driver for modern Al and aims to secure Europe’s sovereignty in this
competitive field by creating a multi-centric Al research laboratory. ELLIS wants to ensure that the highest level

of Al research is performed in the open societies of Europe and follows a three-pillar strategy to achieve that.

A ELLIS - The European Laboratory for Learning and Intelligent Systems




ELLIS Phd with two advisors in Europe
https://ellis.eu/phd-postdoc
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