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Announcements

Assignment 2 on neural networks
• Due on Today



Instance-level recognition

Previous lectures:
• Introduction, Basic camera geometry (J. Ponce), 
• local invariant features, correspondence and matching 

(G. Varol)
• Supervised learning (A. Joulin)
• Neural networks for visual recognition (G. Varol)
• Beyond classification: object detection (G. Varol)

This lecture (J. Sivic):
• Efficient visual search

Next week (G. Varol):
• Generative models, vision and language



Outline – Efficient visual search 

1. Efficient matching of local descriptors
- Approximate nearest neighbor search
- k-d trees, locality-sensitive hashing (LSH)

2. Aggregate local descriptors into a single vector  
- Bag-of-visual-words, inverted files, query expansion

3. Compact representations for very large-scale search
- Product quantization (PQ)

4. Learnable representations 
- Neural representations for large-scale visual search
- Visual search using natural language query



Recap: Local features

Scale and affine co-variant feature detection

Feature descriptors (SIFT)



Recap: Matching

Feature matching

Geometric verification (RANSAC, Hough transform)



1000+ descriptors per image

Recap: Matching



Match regions between frames using SIFT descriptors and 
spatial consistency

Multiple regions overcome problem of partial occlusion

Recap: Matching



Rocco, Cimpoi, Arandjelovic, Torii, Pajdla, Sivic, 
Neighbourhood consensus networks, NIPS 2018

Better matches using recent CNN features instead of SIFT

Matching: Update



What about multiple images?

So far, we have seen successful matching of a query 
image to a single target image using local features.

How to generalize this strategy to multiple target images 
with reasonable complexity?

• 10, 102, 103, …, 107, … 1010, … images?



“Charade” [Donen, 1963]

Visually defined query

“Find this bag”

Example: Visual search in an entire feature length movie

Demo: 
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html



Visually defined query

“Find this bag”

Example: Visual search in an entire feature length movie

Demo: 
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html



Techniques from efficient search are also used for

• Efficient representation of memory in neural networks
Lample et al., Large memory layers with product keys, arXiv preprint 
arXiv:1907.05242.

• Reducing memory footprint of neural networks by 
quantization

Fan et al., Training with Quantization Noise for Extreme Model 
Compression, ICLR 2021 (preprint arXiv:2004.07320) 
P. Stock et al., And the Bit Goes Down: Revisiting the Quantization of 
Neural Networks, ICLR 2020 (preprint arXiv:1907.05686)
Gong et al., Compressing deep convolutional networks using vector 
quantization, arXiv:1412.6115, 2014

• Efficient search of video language embedding spaces.
Miech et al., HowTo100M: Learning a Text-Video Embedding by 
Watching Hundred Million Narrated Video Clips, ICCV 2019.
Demo: https://www.di.ens.fr/willow/research/howto100m/

https://www.di.ens.fr/willow/research/howto100m/


Two strategies

1. Efficient approximate nearest neighbor search on local 
feature descriptors.

2. Quantize descriptors into a “visual vocabulary” and use 
efficient techniques from text retrieval.
(Bag-of-words representation)



Images

Local features invariant 
descriptor 

vectors

1. Compute local features in each image independently
2. “Label” each feature by a descriptor vector based on its intensity
3. Finding corresponding features  à finding nearest neighbour vectors
4. Rank matched images by number of (tentatively) corresponding regions 
5. Verify top ranked images based on spatial consistency

Strategy I: Efficient approximate NN search

invariant 
descriptor 

vectors



Finding nearest neighbour vectors
Establish correspondences between a query image and images in the database 
by nearest neighbour matching on SIFT vectors

128D descriptor 
space

Model image Image database 

Solve following problem for all feature vectors,                     , in the query image:

where,                      ,  are features from all the database images.



Quick look at the complexity of the NN-search

N … images
M … regions per image (~1000)
D … dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example: 
• Matching two images (N=1), each  having 1000 SIFT descriptors

Nearest neighbors search: 0.4 s (2 GHz CPU, implementation in C) 
• Memory footprint: 1000 * 128 = 128kB / image

N =   1,000 … ~7min            (~100MB)
N = 10,000 … ~1h7min        (~    1GB)
…
N = 107 ~115 days     (~    1TB)
…
(Some) Images on Facebook:
N = 1010        …   ~300 years  (~    1PB)

# of images CPU time Memory req.



Nearest-neighbor matching

Solve following problem for all feature vectors, xj, in the query image:

where xi are features in database images.

Nearest-neighbour matching is the major computational bottleneck
• Linear search performs dn operations for n features in the 

database and d dimensions
• No exact methods are faster than linear search for d>10
• Approximate methods can be much faster, but at the cost of 

missing some correct matches



Finding approximate nearest neighbour vectors

• Approximate method is not guaranteed to find the nearest 
neighbour.

• Can be much faster, but at the cost of missing some nearest 
matches

128D descriptor space

Query

True NN 
match

Found 
(near) 
match



Approximate nearest neighbor search

21
Adapted from K. Grauman, B. Leibe

Best-Bin First (BBF), a variant of k-d trees 
that uses priority queue to examine most 
promising branches first 
[Beis & Lowe, CVPR 1997]
Extended to multiple randomized trees in :
[Muja & Lowe, 2009]

Locality-Sensitive Hashing (LSH), a 
randomized hashing technique using 
hash functions that map similar points 
to the same bin, with high probability 
[Indyk & Motwani, 1998]

Can reduce the complexity of the search, e.g. O(log N) for k-d tree.

But at the cost of missing some nearest matches.
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K-d tree
• K-d tree is a binary tree data structure for organizing a set of points in 
a K-dimensional space.

• Each internal node is associated with an axis aligned hyper-plane 
splitting its associated points into two sub-trees.

• Dimensions with high variance are chosen first.

• Position of the splitting hyper-plane is chosen as the mean/median of 
the projected points – balanced tree.
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K-d tree construction

Simple 2D example



KD-tree: Properties

• Binary tree of depth O(log(n))
• Total nodes: (2n -1) (n-1 internal and n leaves)
• Construction time: O(n d log(n))
• Memory requirements: 

• nonleaf node – (dim, threshold)
• Leaf node: data id

• Need to also store the original data 
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K-d tree: Backtracking

Backtracking is necessary as the true nearest neighbor 
may not lie in the query cell.

But in some cases, almost all cells need to be inspected.

Figure: A. Moore



Solution: Approximate nearest neighbor K-d tree

Key ideas:

• Search k-d tree bins in order 
of distance from query

• Requires use of a priority 
queue

• Limit the number of 
neighbouring k-d tree bins to 
explore: only approximate NN 
is found

• Reduce the boundary effects by randomization



Randomized K-d trees

l Multiple randomized trees increase the chances of finding 
nearby points

Query point

True nearest 
neighbour found? No No

True nearest 
neighbour

Yes

l How to choose the dimension to split and the splitting point?
l Pick dimension with the highest variance
l Split at the mean/median 

[Silpa-Anan and Hartley 2008, Philbin et al. 2007]



Approximate NN search using a randomized forest 
of K-d trees: Algorithm summary

1.  Descent all (typically 8) trees to the leaf node

2.  Search k-d tree bins in order of distance from query
• Distance between the query and the bin is defined as the minimum 

distance between the query and any point on the bin boundary

• Requires the use of a priority queue:
> During lookup an entry is added to the priority queue about the option 

not taken
> For multiple trees, the queue is shared among the trees

• Limit the number of neighbouring K-d tree bins to explore 
(parameter of the algorithm, typically set to 512)



Randomized K-d trees: discussion

• Find approximate nearest neighbor in O(logN) time, 
where N is the number of data points. 

• Increased memory requirements: needs to store multiple 
(~8) trees

• Good performance in practice for recognition problems 
(NN-search for SIFT descriptors and image patches).

• Code available online:
http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN



Indexing local features: 
approximate nearest neighbor search

34
K. Grauman, B. Leibe

Best-Bin First (BBF), a variant of k-d 
trees that uses priority queue to 
examine most promising branches 
first [Beis & Lowe, CVPR 1997]

Locality-Sensitive Hashing (LSH), a 
randomized hashing technique using 
hash functions that map similar 
points to the same bin, with high 
probability [Indyk & Motwani, 1998]



Idea: construct hash functions g: Rd→Zk such that 

for any points p,q: 

If ||p-q|| ≤ r,  then Pr[g(p)=g(q)] is “high” or “not-so-small” 
If ||p-q|| > cr, then Pr[g(p)=g(q)] is “small” 

Example of g: linear projections

g(p)=<h1(p),h2(p),…,hk(p)>,  where hX,b(p)=⎣(p*X+b)/w⎦

⎣.⎦ is the “floor” operator. 
Xi are sampled from a Gaussian.
w is the width of each quantization bin.
b is sampled from uniform distr. [0,w].

Locality Sensitive Hashing (LSH)

[Datar-Immorlica-Indyk-Mirrokni’04]



Locality Sensitive Hashing (LSH)

l Choose a random projection

l Project points

l Points close in the original space 
remain close under the projection

l Unfortunately, converse not true

l Answer: use multiple quantized projections which define a 
high-dimensional “grid”

Slide: Philbin, Chum, Isard, Zissrman



Locality Sensitive Hashing (LSH)

l Cell contents can be efficiently 
indexed using a hash table

l Repeat to avoid quantization errors 
near the cell boundaries

l Point that shares at least one cell = potential candidate

l Compute distance to all candidates

Slide: Philbin, Chum, Isard, Zissrman



LSH: discussion

In theory, query time is O(kL), where k is the number of projections and L is the 
number of hash tables,  i.e. independent of the number of points, N.

In practice, LSH has high memory requirements as large number of 
projections/hash tables are needed.

Code and more materials available online:
http://www.mit.edu/~andoni/LSH/

Hashing functions could be also data-dependent (PCA) or learnt from labeled 
point pairs (close/far).
Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008. 
R. Salakhutdinov and G. Hinton, “Semantic Hashing,” ACM SIGIR, 2007.

See also:
http://cobweb.ecn.purdue.edu/~malcolm/yahoo Slaney2008(LSHTutorialDraft).pdf
http://www.sanjivk.com/EECS6898/ApproxNearestNeighbors_2.pdf

http://www.mit.edu/~andoni/LSH/
http://cobweb.ecn.purdue.edu/~malcolm/yahoo/Slaney2008(LSHTutorialDraft).pdf
http://www.sanjivk.com/EECS6898/ApproxNearestNeighbors_2.pdf


Dataset: 100K SIFT descriptors

Code for all methods available online, see Muja&Lowe’09

Comparison of approximate NN-search methods

Figure: Muja&Lowe’09



Approximate nearest neighbour search (references)

J. L. Bentley. Multidimensional binary search trees used for associative searching. 
Comm. ACM, 18(9), 1975. 

Freidman, J. H., Bentley, J. L., and Finkel, R. A. An algorithm for finding best matches in 
logarithmic expected time. ACM Trans. Math. Softw., 3:209–226, 1977. 

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. An optimal 
algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of 
the ACM, 45:891–923, 1998. 

C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast image descriptor matching. In 
CVPR, 2008.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm 
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P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse 
of dimensionality,” in Proc. of 30th ACM Symposium on Theory of Computing, 1998 

G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with parameter-
sensitive hashing,” in Proc. of the IEEE International Conference on Computer Vision, 
2003. 

R. Salakhutdinov and G. Hinton, “Semantic Hashing,” ACM SIGIR, 2007. 

Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008. 



ANN - search (references continued)
O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash and tf-

idf weighting. BMVC., 2008. 

B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scalable image 
search,” Proc. of the IEEE International Conference on Computer Vision, 2009. 

J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for scalable image 
retrieval,” in CVPR, 2010.

H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. 
PAMI, 2011. 

A.Gordo and F.Perronnin. Asymmetric distances for binary embeddings. CVPR, 2011. 

Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning 
binary codes. CVPR, 2011.

A. Babenko and V. Lempitsky. The inverted multi-index. CVPR, 2012.

T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization for approximate nearest 
neighbor search. CVPR, 2013. 

T. Norouzi and D. Fleet, Cartesian k-means., CVPR, 2013

See tutorial at CVPR’13 by H. Jegou: https://sites.google.com/site/lsvr13

Code: https://github.com/facebookresearch/faiss

https://sites.google.com/site/lsvr13
https://github.com/facebookresearch/faiss


Outline – Efficient visual search 

1. Efficient matching of local descriptors
- Approximate nearest neighbor search
- k-d trees, locality-sensitive hashing (LSH)

2. Aggregate local descriptors into a single vector  
- Bag-of-visual-words, inverted files, query expansion

3. Compact representations for very large-scale search
- Product quantization (PQ)

4. Learnable representations 
- Neural representations for large-scale visual search
- Visual search using natural language query



• Linear exhaustive search can be prohibitively expensive 
for large image collections

• Answer (so far): approximate NN search methods
• Randomized KD-trees
• Locality sensitive hashing

• However, memory footprint can be still high.
Example: N = 107 images, 1010 SIFT features with 128B 
per feature 1TB of memory

Look how text-based search engines (Google) index 
documents – inverted files.

So far … 



Indexing text with inverted files 

Need to map feature descriptors to “visual words”. 

Inverted file: Term            List of hits (occurrences in documents)

People          [d1:hit hit hit], [d4:hit hit] …

Common       [d1:hit hit], [d3: hit], [d4: hit hit hit] …

Sculpture      [d2:hit], [d3: hit hit hit]  …

Document 
collection:



[Sivic and Zisserman, ICCV 2003]

Vector quantize descriptors
- Compute SIFT features from a subset of images
- K-means clustering (need to choose K)

Build a visual vocabulary

128D descriptor space 128D descriptor space



Visual words
Example: each group 
of patches belongs to 
the same visual word

47

Figure from  Sivic & Zisserman, ICCV 2003

128D descriptor space



More specific example

Samples of visual words  (clusters on SIFT descriptors):



More specific example

Samples of visual words  (clusters on SIFT descriptors):



Visual words

• First explored for texture and 
material representations
• Texton = cluster center of 
filter responses over collection 
of images
• Describe textures and 
materials based on distribution 
of prototypical texture 
elements.

Leung & Malik 1999; Varma & 
Zisserman, 2002; Lazebnik, 
Schmid & Ponce, 2003;

Slide: Grauman&Leibe



Sivic and Zisserman, ICCV 2003
Visual words: quantize descriptor space

Nearest neighbour matching

128D descriptor 
space

Image 1 Image 2

• expensive to 
do for all frames



Sivic and Zisserman, ICCV 2003

Nearest neighbour matching

128D descriptor 
space

Image 1 Image 2

Vector quantize descriptors 

128D descriptor 
space

Image 1 Image 2

42

5

425 5

42

• expensive to 
do for all frames

Visual words: quantize descriptor space



Sivic and Zisserman, ICCV 2003

Nearest neighbour matching

128D descriptor 
space

Image 1 Image 2

Vector quantize descriptors 

128D descriptor 
space

Image 1 Image 2

42

5

425 5

42

New image

• expensive to 
do for all frames

Visual words: quantize descriptor space



Sivic and Zisserman, ICCV 2003

Nearest neighbour matching

128D descriptor 
space

Image 1 Image 2

Vector quantize descriptors 

128D descriptor 
space

Image 1 Image 2

42

5

425 5

42

New image

42

• expensive to 
do for all frames

Visual words: quantize descriptor space



Vector quantize the descriptor space (SIFT)

The same visual word

542



Image Colelction of visual words

Representation: bag of (visual) words
Visual words are ‘iconic’ image patches or fragments
• represent their frequency of occurrence
• but not their position 



Offline: Assign visual words and compute 
histograms for each image

Normalize 
patch

Detect patches

Compute SIFT 
descriptor

542

Represent image as a 
sparse histogram of visual 
word occurrences

2
0
0
1
0
1
…

Find nearest 
cluster center



Offline: create an index

Image credit: A. Zisserman K. Grauman, B. Leibe

Word 
number

Posting 
list

• For fast search, store a “posting list” for the dataset

• This maps visual word occurrences to the images they occur in

(i.e. like the “book index”)



At run time

Image credit: A. Zisserman K. Grauman, B. Leibe

Word 
number

Posting 
list

• User specifies a query region

• Generate a short-list of images using visual words in the region

1. Accumulate all visual words within the query region

2. Use “book index” to find other frames with these words

3. Compute similarity for images which share at least on word



At run time

Image credit: A. Zisserman K. Grauman, B. Leibe

• Score each image by the (weighted) number of common 
visual words (tentative correspondences)

• Worst case complexity is linear in the number of images N

• In practice, it is linear in the length of the lists (<< N)

Word 
number

Posting 
list



Bags of visual words

Summarize entire image based 
on its distribution (histogram) of 
visual word occurrences.

Slide: Grauman&Leibe, Image: L. Fei-Fei

Hofmann 2001
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Analogous to bag of words   
representation commonly used 
for text documents.



For a vocabulary of size K, each image is represented by a K-vector

where ti is the number of occurrences of visual word i. 

Images are ranked by the normalized scalar product between the query 
vector vq and all vectors in the database vd:

Another interpretation: the bag-of-visual-words model

Scalar product can be computed efficiently using inverted file.

What if vectors are binary?  What is the meaning of               ?



Images

Local features invariant 
descriptor 

vectors

1. Compute local features in each image independently (offline)
2. “Label” each feature by a descriptor vector based on its intensity (offline)
3. Finding corresponding features is transformed to finding nearest neighbour vectors
4. Rank matched images by number of (tentatively) corresponding regions 
5. Verify top ranked images based on spatial consistency.

Strategy I: Efficient approximate NN search

invariant 
descriptor 

vectors



frames

regions invariant 
descriptor 

vectors

1. Compute affine covariant regions in each frame independently (offline)
2. “Label” each region by a vector of descriptors based on its intensity (offline)
3. Build histograms of visual words by descriptor quantization (offline)
4. Rank retrieved frames by matching vis. word histograms using inverted files.
5. Verify retrieved frame based on spatial consistency.

Strategy II: Match histograms of visual words 

Quantize Single vector 
(histogram)



[Lowe04, Philbin07]

Clustered and 
quantized to 
visual words

Querying

sparse frequency vector

Inverted
file

Set of SIFT
descriptorsquery image

Geometric
verification

[Lowe04, Mikolajczyk07] [Sivic03, Philbin07]

tf-idf weighting

Hessian-Affine 
regions + SIFT 

descriptors

Ranked short-list of 
images

1

2

3

3

4

5

Results

Overview of the retrieval system



Visual search using local regions (references)
C. Schmid, R. Mohr, Local Greyvalue Invariants for Image Retrieval, PAMI, 1997
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2003
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2006.
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2009



Visual search using local regions (references)
T. Turcot and D. G. Lowe. Better matching with fewer features: The selection of 

useful features in large database recognition problems. In ICCV Workshop on 
Emergent Issues in Large Amounts of Visual Data (WS-LAVD), 2009.
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G. Tolias, Y. Avrithis, H. Jégou. Image search with selective match kernels: 
aggregation across single and multiple. International Journal of Computer 
Vision, 2016



Efficient visual search for objects and places

Oxford Buildings Search - demo

http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index
.html

http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index.html
http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index.html


Example







Oxford buildings dataset

l Automatically crawled from Flickr

l Consists of:



Oxford buildings dataset
l Landmarks plus queries used for evaluation

All Soul's

Ashmolean

Balliol

Bodleian

Thom 
Tower

Cornmarket

Bridge of 
Sighs

Keble

Magdalen

University 
Museum

Radcliffe 
Camera

l Ground truth obtained for 11 landmarks

l Evaluate performance by mean Average Precision



Measuring retrieval performance: Precision - Recall
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• Precision: % of returned images that 
are relevant

• Recall: % of relevant images that are 
returned



Average Precision

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

recall

pr
ec
is
io
n • A good AP score requires both 

high recall and high precision
• Application-independentAP

Performance measured by mean Average Precision (mAP) 
over 55 queries on 100K or 1.1M image datasets





50K 0.473 0.599
100K 0.535 0.597
250K 0.598 0.633

500K 0.606 0.642
750K 0.609 0.630
1M 0.618 0.645

1.25M 0.602 0.625

vocab 
size

bag of 
words

spatial

Mean Average Precision variation with vocabulary size



Query images Prec.

Rec.

• high precision at low recall (like google)

• variation in performance over query

• none retrieve all instances



Visual search (references)
G. Tolias, Y. Avrithis, H. Jégou. Image search with selective match kernels: 

aggregation across single and multiple. International Journal of Computer 
Vision, 2016

G Tolias, R Sicre, H Jégou, Particular object retrieval with integral max-pooling of 
CNN activations, International Conference on Learning Representations (ICLR) 
2016

F Radenović, G Tolias, O Chum, CNN Image Retrieval Learns from BoW: 
Unsupervised Fine-Tuning with Hard Examples, European Conference on 
Computer Vision (ECCV) 2016.

F Radenović, A Iscen, G Tolias, Y Avrithis, O Chum. Revisiting oxford and paris: 
Large-scale image retrieval benchmarking, Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, 2018.



Obtaining visual words is like a sensor measuring the image

“noise” in the measurement process means that some visual 
words are missing or incorrect, e.g. due to
• Missed detections
• Changes beyond built in invariance
• Quantization effects

Consequence: Visual word in query is missing in target image

Why aren’t all objects retrieved?

Clustered and 
quantized to 
visual words

sparse frequency vector

Set of SIFT
descriptorsquery image

[Lowe04, Mikolajczyk07] [Sivic03, Philbin07]

Hessian-Affine regions + 
SIFT descriptors

1. Query expansion
2. Better quantization



Query Expansion in text

In text :
• Reissue top n responses as queries
• Pseudo/blind relevance feedback
• Danger of topic drift

In vision:
• Reissue spatially verified image regions as queries



Original query: Hubble Telescope Achievements

Example from: Jimmy Lin, University of Maryland

Query expansion: Select top 20 terms from top 20 documents according to tf-idf

Telescope, hubble, space, nasa, 
ultraviolet, shuttle, mirror, telescopes, 
earth, discovery, orbit, flaw, scientists, 
launch, stars, universe, mirrors, light, 
optical, species

Added terms:

Query Expansion: Text



Automatic query expansion

Visual word representations of two images of the same 
object may differ (due to e.g. detection/quantization noise) 
resulting in missed returns

Initial returns may be used to add new relevant visual words 
to the query

Strong spatial model prevents ‘drift’ by discarding false 
positives

[Chum, Philbin, Sivic, Isard, Zisserman, ICCV’07; 

Chum, Mikulik, Perdoch, Matas, CVPR’11]



Visual query expansion - overview
1. Original query

3. Spatial verification

4. New enhanced query

…

2. Initial retrieval set

5. Additional retrieved images 



Query Image Originally retrieved image Originally not retrieved

Query Expansion



Query Expansion



Query Expansion



Query Expansion



Query Expansion

…

New expanded query is formed as 

• the average of visual word vectors of spatially verified returns 

• only inliers are considered

• regions are back-projected to the original query image

Spatially verified retrievals with matching regions overlaid

New expanded query

Query Image



Demo



Query image Originally retrieved Retrieved only 
after expansion

Query Expansion



Query
image

Expanded results (better)

Original results (good)

Prec.

Prec.

Rec.

Rec.



Beyond query expansion – image region graphs

[Iscen et al., CVPR 2017]
https://cmp.felk.cvut.cz/~iscenahm/_pages/diffusion.html



Quantization errors

Typically, quantization has a significant impact on the final 
performance of the system [Sivic03,Nister06,Philbin07]

Quantization errors split features that should be grouped 
together and confuse features that should be separated

Voronoi
cells



Overcoming quantization errors

• Soft-assign each descriptor to multiple cluster centers
[Philbin et al. 2008, Van Gemert et al. 2008]

A: 0.1
B: 0.5
C: 0.4

B: 1.0 Hard Assignment

Soft Assignment

Learning a vocabulary to overcome quantization errors
[Mikulik et al. ECCV 2010, Philbin et al. ECCV 2010] 



Beyond bag-of-visual-words I.

Hamming embedding [Jegou&Schmid 2008]

• Standard quantization using bag-of-visual-words
• Additional localization in the Voronoi cell by a binary 

signature



Locality-constrained linear coding.
[Wang et al. CVPR 2010]

- Represent data point as a linear combination of nearby 
cluster centers.

- Store the coefficients of linear combination.

Used for category-level classification.

Beyond bag-of-visual-words II.

Connection to sparse coding -
more at lecture by J. Ponce



VLAD – Vector of locally aggregated descriptors
[Jegou et al. 2010] but see also [Perronin et al. 2010]

Measure (and quantize) the difference vectors from the 
cluster center.

ci

x

Beyond bag-of-visual-words III.



Outline – Efficient visual search 

1. Efficient matching of local descriptors
- Approximate nearest neighbor search
- k-d trees, locality-sensitive hashing (LSH)

2. Aggregate local descriptors into a single vector  
- Bag-of-visual-words, inverted files, query expansion

3. Compact representations for very large-scale search
- Product quantization (PQ)

4. Learnable representations 
- Neural representations for large-scale visual search
- Visual search using natural language query



Towards very large-scale image search

• BOF+inverted file can handle up to ~10 millions images
– with a limited number of descriptors per image à RAM: 40GB
– search: 2 seconds

• Web-scale = billions of images
– with 100 M per machine à search: 20 seconds, RAM: 400 GB
– not tractable 

• Solution: represent each image by one compressed vector

Slide credit: C. Schmid



Images

Local features invariant 
descriptor 

vectors

Strategy I: Efficient approximate NN search

invariant 
descriptor 

vectors



frames

regions invariant 
descriptor 

vectors

Strategy II: Match histograms of visual words 

Quantize Single vector 
(histogram)



frames

regions descriptor 
vectors

Strategy III: Match compressed vectors
Aggregate 

into a single 
vector

Compress

Slide credit: C. Schmid



Compact image representation

l Aim: improving the tradeoff between
► search speed
► memory usage
► search quality

l Approach: joint optimization of three stages
► descriptor aggregation
► dimension reduction
► indexing algorithm

Descriptor 
aggregation

Descriptor 
Compression

(Non) –
exhaustive 

search

Slide credit: C. Schmid

Image 
representation

PCA + 
PQ codes

BOW
VLAD

Local features
CNN descriptors

Approx. nearest neighbor 
Inverted files



l Vector split into m subvectors:

l Subvectors are quantized separately by quantizers
where each     is learned by k-means with a limited number of centroids

l Example: y = 128-dim vector split in 8 subvectors of dimension 16
► each subvector is quantized with 256 centroids  -> 8 bit 
► very large codebook 256^8 ~ 1.8x10^19

Product quantization for nearest neighbor search

8 bits

16 components

⇒ 8 subvectors x 8 bits = 64-bit quantization index

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

256
centroids

[Jegou, Douze, Schmid, PAMI’11] Slide credit: C. Schmid



Product quantization

Image credit: K. He
http://kaiminghe.com/cvpr13/index.html

PQ: Product quantization, H. Jegou, M. Douze and C. Schmid, TPAMI 2011
OPQ: Optimized Product Quantization, by Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun, TPAMI, 2013.

FAISS library for efficient indexing
https://github.com/facebookresearch/faiss

http://kaiminghe.com/publications/pami13opq.pdf
https://github.com/facebookresearch/faiss


Outline – Efficient visual search 

1. Efficient matching of local descriptors
- Approximate nearest neighbor search
- k-d trees, locality-sensitive hashing (LSH)

2. Aggregate local descriptors into a single vector  
- Bag-of-visual-words, inverted files, query expansion

3. Compact representations for very large-scale search
- Product quantization (PQ)

4. Learnable representations 
- Neural representations for large-scale visual search
- Visual search using natural language query



Beyond local invariant features:
What objects/scenes local regions do not work on?



E.g. texture-less objects, objects defined by shape, deformable 
objects, wiry objects.

What objects/scenes local regions do not work on?





Other types of objects

Visual search for texture-less, wiry, deformable and 3D 
objects..

See e.g.
Where to buy it: Matching street clothing photos in online shops, M Hadi Kiapour, X Han, S 
Lazebnik, AC Berg, TL Berg, ICCV 2015.



Other types of appearance variations 
Match objects across large changes of appearance 

Examples:  non-photographic depictions, degradation 
over time, change of season, change of illumination, …



Extreme viewpoint changes

Learning Deep Representations for Ground-to-Aerial Geolocalization

Tsung-Yi Lin† Yin Cui† Serge Belongie† James Hays§
tl483@cornell.edu yc984@cornell.edu sjb344@cornell.edu hays@cs.brown.edu

†Cornell Tech §Brown University

Abstract

The recent availability of geo-tagged images and rich
geospatial data has inspired a number of algorithms for
image based geolocalization. Most approaches predict the
location of a query image by matching to ground-level im-
ages with known locations (e.g., street-view data). However,
most of the Earth does not have ground-level reference pho-
tos available. Fortunately, more complete coverage is pro-
vided by oblique aerial or “bird’s eye” imagery. In this
work, we localize a ground-level query image by matching
it to a reference database of aerial imagery. We use pub-
licly available data to build a dataset of 78K aligned cross-
view image pairs. The primary challenge for this task is
that traditional computer vision approaches cannot handle
the wide baseline and appearance variation of these cross-
view pairs. We use our dataset to learn a feature represen-
tation in which matching views are near one another and
mismatched views are far apart. Our proposed approach,
Where-CNN, is inspired by deep learning success in face
verification and achieves significant improvements over tra-
ditional hand-crafted features and existing deep features
learned from other large-scale databases. We show the ef-
fectiveness of Where-CNN in finding matches between street
view and aerial view imagery and demonstrate the ability of
our learned features to generalize to novel locations.

1. Introduction
Consider the photo on the left side of Fig. 1. How can we

estimate where it was taken? Most existing methods predict
image location via matching to other ground-level photos
with known locations, but what if that data isn’t available?
In this work, we present a method to match ground level
queries to aerial imagery. The right side of Fig. 1 shows one
such aerial image out of thousands in our database. Match-
ing across these disparate visual domains is difficult for two
main reasons. Geometrically, the wide baseline induces a
large amount of occlusion in each view (e.g., we only see
building roofs in aerial views, and occlusions by trees and
street parking are common in street-level views). Further-

Query&Image& Matching&Database&

Figure 1: Given a query street-view image, this paper aims
to find where it was taken by matching it to a city-scale
aerial view image database.

more, the photos may have been captured at different times
with different lighting, weather, and season. The main pur-
pose of this paper is to investigate the feasibility of ground
to aerial matching in light of these challenges.

In this paper, we frame photo geolocalization as an iden-
tity verification task where only one correct location exists
in a city-scale region. This is analogous to the well-studied
face verification [18] task in which algorithms must decide
whether a pair of input photos depict the same individual.
Recent methods achieved high performances by extracting
hand-crafted features at aligned fiducial points [5, 6, 8].
While these approaches are fairly specific to the face do-
main, DeepFace [25] instead achieved impressive accuracy
by learning a deep feature representation on aligned face
images with massive additional training data. Inspired by
the success of DeepFace, we first create a large-scale dataset
that contains cross-view images aligned by publicly avail-
able coarse depth estimates on ground images. Then, a
low dimensional feature representation is learned by a deep
“Siamese network” [10] with the objective that the cross-
view image pairs of the same location will be close while
pairs of different locations or views will be far away.

The contributions of this paper are three-fold: (1) our
method can localize a photo without using ground-level
reference imagery by matching to aerial imagery. (2) We
present a novel method to create a large-scale cross-view
training dataset from public data sources. (3) We examine
traditional computer vision features and several recent deep

1

[Lin et al., CVPR’15]

See also: [Bansal et al.’11, Shan et al.’14 ]

Query image Matching dataset



Changes over time

See also: e.g. Perdoch et al.’15, Fernando et al.’14, Schindler et al.’06, Martin-
Buralla’15, Matzen&Snavely’14



Inputs: paintings, drawings, 
historical photographs,

reference 3D model
Output: recovered artist/camera 

viewpoints

Example I.: Localize non-photographic 
depictions

[Aubry, Russell, Sivic, 2013]
http://www.di.ens.fr/willow/research/painting_to_3d/



Geo-localization of historical and non-photographic 
depictions



?

[Taira et al., CVPR 2018]

Example: Visual localization in indoor 
environments



Visual localization indoors
[Taira et al., CVPR 2018]
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(a) (b)
Figure E. Failure cases. Our InLoc approach fails to localize
these examples due to many moving objects, e.g. people (a) or
chairs (b), and highly dynamic scenes, e.g. opened/closed shutters
(a) or pictures on the wall/removed (b). From top to bottom: query
image and the reference database image.
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(a) (b)
Figure E. Failure cases. Our InLoc approach fails to localize
these examples due to many moving objects, e.g. people (a) or
chairs (b), and highly dynamic scenes, e.g. opened/closed shutters
(a) or pictures on the wall/removed (b). From top to bottom: query
image and the reference database image.
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(a) (b)
Figure E. Failure cases. Our InLoc approach fails to localize
these examples due to many moving objects, e.g. people (a) or
chairs (b), and highly dynamic scenes, e.g. opened/closed shutters
(a) or pictures on the wall/removed (b). From top to bottom: query
image and the reference database image.
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(a) (b)
Figure E. Failure cases. Our InLoc approach fails to localize
these examples due to many moving objects, e.g. people (a) or
chairs (b), and highly dynamic scenes, e.g. opened/closed shutters
(a) or pictures on the wall/removed (b). From top to bottom: query
image and the reference database image.

6

The same neural network

Can be efficienty
indexed using
kd-trees, LSH, 

PQ  …

Solution: Learn neural distance functions

See also [Miech et al., 1706.06905, 1804.02516], and e.g. [Frome et al., NIPS 2013] [Gong et al., IJCV 2014]

The same
location

Different
location



Joint
embedding
space f(x)

Neural 
network f(x)
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(a) (b)
Figure E. Failure cases. Our InLoc approach fails to localize
these examples due to many moving objects, e.g. people (a) or
chairs (b), and highly dynamic scenes, e.g. opened/closed shutters
(a) or pictures on the wall/removed (b). From top to bottom: query
image and the reference database image.

6

Use learnt f(x) for efficient retrieval

Query

Database of images from different locations

Find an image from the database that has the smallest
distance in the learnt embedding space f(x)

Can be efficienty
indexed using
kd-trees, LSH, 

PQ  …



Example: Visual localization in changing conditions
• [Sattler et al., arXiv:1707.09092]



Why is it difficult?

• Lighting changes: Different time of day / year

• Changes in camera viewpoint

• Occluders and ambiguous objects: People, cars, trees, pavement...

• Big data: World-scale localization
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• Lighting changes: Different time of day / year

• Changes in camera viewpoint
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• Big data: World-scale localization



Why is it difficult?

• Lighting changes: Different time of day / year

• Changes in camera viewpoint

• Occluders and ambiguous objects: People, cars, trees, pavement...

• Big data: World-scale localization



Why is it difficult?

• Lighting changes: Different time of day / year

• Changes in camera viewpoint

• Occluders and ambiguous objects: Trees, cars, pavement...

• Big data: World-scale localization



The approach: visual instance recognition

Represent the world by a set of 

geotagged images



Image representation space

The approach: visual instance recognition

f(     )

f(     )
f(     )

f(     )

f(     )
f(     )

+
+

+

+

+
+

f(     )

+

Query

Design an “image 

representation” extractor f(I)

Geotagged image database

Transfer GPS

+



Results on standard retrieval benchmarks

- Test our network on a related task: specific image/object retrieval
- Sets the new state-of-the-art for compact image representations 

(256-D) on all 3 datasets

Method Oxford 5k 
(full)

Oxford 5k
(crop)

Paris 6k 
(full)

Paris 6k 
(crop)

Holidays 
(original)

Holidays 
(rotated)

Jégou and Zisserman
CVPR14 47.2 65.7 65.7

Gordo et al. CVPR12 78.3

Razavian et al. ICLR15 53.3 67.0 74.2
Babenko and 
Lempitsky ICCV15 58.9 53.1 80.2

NetVLAD off-the-shelf 53.4 55.5 64.3 67.7 82.1 86.0

NetVLAD trained 62.5 63.5 72.0 73.5 79.9 84.3O
ur

s

[Radenović et al. arXiv 16, Gordo et al. arXiv 16]



Example result

Query image Top retrieved image



References learnable representations for large-
scale matching

Example: Visual place recognition 
R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla and J. Sivic
NetVLAD: CNN architecture for weakly-supervised place recognition, 

CVPR 2016.

See also:
A. Gordo, J. Almazan, J. Revaud, D. Larlus. Deep Image Retrieval: 

Learning global representations for image search, ECCV 2016

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns 
from BoW: Unsupervised Fine-Tuning with Hard Examples, ECCV 
2016



… the pot can then be filled with water and the …

Joint
Embedding

Video
network

Text
network

But also: learn joint video and text embedding

See also [Miech et al., 1706.06905, 1804.02516], and e.g. [Frome et al., NIPS 2013] [Gong et al., IJCV 2014]

… you just cook the meat for 3 hrs …
Text
network



We want:

… filled with water … … filled with water …
… you just cook the meat

for 3 hrs …

(dot product)

Example loss function: Max-margin triplet loss



We want:

… filled with water …… filled with water …

(dot product)

Example loss function: Max-margin triplet loss



We want:

… filled with water …
… you just cook the meat

for 3 hrs …

(dot product)

Example loss function: Max-margin triplet loss





23K tasks  ⦁ 1.3M videos  ⦁ 130M clip-caption pairs

[Miech, Zhukov, Alayrac, Tapaswi, Laptev and Sivic, ICCV 2019]

Going WikiHow scale – the HowTo100M dataset



HowTo100M dataset

23K tasks  ⦁ 1.3M videos  ⦁ 130M clip-caption pairs

Going WikiHow scale





Summary – Efficient visual search 

1. Efficient matching of local descriptors
- Approximate nearest neighbor search
- k-d trees, locality-sensitive hashing (LSH)

2. Aggregate local descriptors into a single vector  
- Bag-of-visual-words, inverted files, query expansion

3. Compact representations for very large-scale search
- Product quantization (PQ)

4. Learnable representations 
- Neural representations for large-scale visual search
- Visual search using natural language query



Internships abroad: 
ELLIS Unit Prague (ellisprague.eu)
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Internships abroad: 
ELLIS Unit Prague (ellisprague.eu)

Possibility of a joint Phd with the Willow team in Paris or 
other ELLIS Units across Europe 
(see “ellis.eu/units” and “ellis.eu/phd-postdoc”).
Contact: josef.sivic@cvut.cz / josef.sivic@inria.fr

mailto:josef.sivic@cvut.cz
mailto:josef.sivic@inria.fr


ELLIS Phd with two advisors in Europe 



ELLIS Phd with two advisors in Europe
https://ellis.eu/phd-postdoc


