How to avoid manual annotation?
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The ImageNet Challenge Story ...

IMJAGENET

Flute Strawberry Traffic light

1000 categories

« Training: 1000 images for each category

» Testing: 100k images




The ImageNet Challenge Story ... strong supervision

Classification Results (CLS)
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The ImageNet Challenge Story ... outcomes

Strong supervision:

 Features from networks trained on ImageNet can be used for other visual tasks, e.g.
detection, segmentation, action recognition, fine grained visual classification

» To some extent, any visual task can be solved now by:
1. Construct a large-scale dataset labelled for that task
2. Specify a training loss and neural network architecture
3. Train the network and deploy

* Are there alternatives to strong supervision for training? Self-Supervised learning ....



Why Self-Supervision?

Expense of producing a new dataset for each new task

. Some areas are supervision-starved, e.g. medical data, where it is hard to obtain
annotation

Untapped/availability of vast numbers of unlabelled images/videos

— Facebook: one billion images uploaded per day

— 300 hours of video are uploaded to YouTube every minute

How infants may learn ...



Self-Supervised Learning

The Scientist in the Crib: What Early Learning Tells Us About the Mind
by Alison Gopnik, Andrew N. Meltzoff and Patricia K. Kuhl

The Development of Embodied Cognition: Six Lessons from Babies
by Linda Smith and Michael Gasser



https://www.mitpressjournals.org/doi/pdfplus/10.1162/1064546053278973

What is Self-Supervision?

A form of unsupervised learning where the data provides the supervision
* In general, withhold some part of the data, and task the network with predicting it

* The task defines a proxy loss, and the network is forced to learn what we really
care about, e.g. a semantic representation, in order to solve it



Example: relative positioning

Train network to predict relative position of two regions in the same image

. < 8 possible locations
Classifier
CNN CNN - S
4‘ 4‘ Randomly Sample Patch

Sample Second Patch

Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015
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Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015



Semantics from a non-semantic task

Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015



Outline

Self-supervised learning in three parts:

A. from images
B. from videos

C. from videos and sound



Part A

Self-Supervised Learning from Images



Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters and




Recap: relative positioning

Train network to predict relative position of two regions in the same image

Lt b & 8 possible locations

Sample Second Patch

Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015




Patch Embedding

CNN Note: connects across instances!




Evaluation: PASCAL VOC Detection
« 20 object classes (car, bicycle, person, horse ...

* Predict the bounding boxes of all objects of a given class in an image (if any)

Horse Motorbike

. versonFrontalruncoce
personFrontaiTruncOce




Evaluation: PASCAL VOC Detection

 Pre-train CNN using self-supervision (no labels)

» Train CNN for detection in R-CNN object category detection pipeline

warped region

aeroplane? no.

R-CNN

person? yes.

: e I
AN ,; - |
N ’% \ l
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tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
image proposals (~2k) CNN features regions

!

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]



Average Precision

Evaluation: PASCAL VOC Detection

56.8%

51.1%

45.6%

ImageNet Labels Relative No Pretraining
positioning



Avoiding Trivial Shortcuts

Include a gap

Jitter the patch locations
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Chromatic Aberration







What is learned?
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Visual Data Mining?




Image example Il: colourization

Train network to predict pixel colour from a monochrome input

Grayscale image: L channel Concatenate (L,ab)

X € RHXWXI (X,?)

“Free”
L »Fﬁﬁ-ﬁ*# ab | —— supenisory
signal




Image example Il: colourization

Train network to predict pixel colour from a monochrome input

Colorful Image Colorization, Zhang et al., ECCV 2016
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Inherent Ambiguity

Our Output Ground Truth






Image example lll: exemplar networks

Exemplar Networks (Dosovitskiy et al., 2014)
Perturb/distort image patches, e.g. by cropping and affine transformations

Train to classify these exemplars as same class
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Autoencoders Denoising Autoencoders Exemplar networks

Hmton & Salakhutdlnov o ) ’ .
Science 2006. Vincent et al. ICML 2008. DOSOVI'[SkIy et al., NIPS 2014
Co-Occurrence Egomotion
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Noroozi et al 2016 Pathak et al. CVPR 2016 Zhang et al. CVPR 2017




Multi-Task Self-Supervised Learning

Self-supervision task ImageNet PASCAL VOC
Classification Detection
top-5 accuracy mAP
Rel. Pos 59.21 66.75
Colour 62.48 65.47
Exemplar 53.08 60.94
Rel. Pos + colour 66.64 68.75
Rel. Pos + Exemplar 65.24 69.44
Rel. Pos + colour + Exemplar 68.65 69.48
ImageNet labels 85.10 74.17

Procedure:

* ImageNet-frozen: self-supervised
training, network fixed, classifier
trained on features

« PASCAL.: self-supervised pre-
training, then train Faster-RCNN

* ImageNet labels: strong supervision

NB: all methods re-implemented on
same backbone network (ResNet-101)

Multi-task self-supervised visual learning, C Doersch, A Zisserman, ICCV 2017



Image Transformations — 2018

Which image has the correct rotation?

Unsupervised representation learning by predicting image rotations,
Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018




Image Transformations — 2018

L - ‘ P
90° rotation 270° rotation 180° rotation 0° rotation 270° rotation
Figure 1: Images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270 degrees). The

core intuition of our self-supervised feature learning approach is that if someone is not aware of the

concepts of the objects depicted in the images, he cannot recognize the rotation that was applied to
them.

Unsupervised representation learning by predicting image rotations,
Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018



Image Transformations — 2018

o e T T T
| Objectives:
W |
ConvNet Maximize prob.
—» g(X,y=0) model F(.) | F'x" W |

Rotate 0 degrees I Predict 0 degrees rotation (y=0)

Rotated image: X

ConvNet

gEyy=t) model F(.)

Rotate 90 degrees
Rotated image: X |

ConvNet ‘7 Maximize prob. |
L model F(.) L Fz( Xz)

| Predict 180 degrees rotation (y=2) |

—» g(X,y=2)

Rotate 180 degrees

Rotated image: X

o ConvNet Maximize prob. |

—» (X, y=3) model F() | F0) J |
Rotate 270 degrees - | s 49 ; : -

Riotatidl i ¥ Predict 270 degxei rota:on 3—3) |

Unsupervised representatio?legrnin_g by predicting image rotations,
Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018



Image Transformations — 2018

PASCAL VOC

» Uses AlexNet Detection mAP
» Closes gap between ImageNet and Random 43.4
self-supervision Rel. Pos. 51.1
Colour 46.9
Rotation 54.4
ImageNet Labels 56.8

Unsupervised representation learning by predicting image rotations,
Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018



SIMCLR: Contrastive Learning of Visual Representations

Overview

SImMCLR Framework

Representation

h; Z;
+ a Encoder Dense Relu Dense—»[ [ | | —

Data Mflx_imi_ze
Augmentation similarity

Original __l Encoder Dense Relu Dense—» | | | —
Image hj 2
T -
Transformed Base Encoder Projection Head
Images f(.) gl.)
Downstream
tasks

SImMCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020



SIMCLR: Contrastive Learning of Visual Representations

Augmentation

Preparing similar pairs in a batch

& -

Batch Size Random- Augmented Images
_ Augmentation = B _
N=2 =2N=2*2=4
(T) :

m' 1Y
y —— Pair 2
e

v

Raw Images Training Data

SImMCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020



SIMCLR: Contrastive Learning of Visual Representations

Calculated Embeddings Pairwise cosine similarity

. e
;‘a 1 ‘
Batch Z2 1
Augmented ! '~> w
Images Z3 —
24 - A X

8

Similarity Calculation of Augmented Images

. L - COSIne zZi oz
similarity( | : ) — similarity (' -y ')

SImMCLR, A Simple Framework for Contrastive Learning of Visual Representations

Learning

-
- Zi 7

G —
S (=)

T = temperature
hyperparameter. It can
scale the input and widen
the range [-1, 1] of cosine
similarity

[|z]| = vector norm

Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020



SIMCLR: Contrastive Learning of Visual Representations

Learning

.

first image o ! N m i Pair 1

0
Probability l

similarity( @ )
e
similarity( @) + similarity( ) + esim“aritv()
e e

Softmax =

SImMCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020



SIMCLR: Contrastive Learning of Visual Representations

NCE: Noise Contrastive Estimator Learni ng

/

exp(sim(z;, z;)/T)
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SImMCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020



SIMCLR: Contrastive Learning of Visual Representations

Augmentations

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

SImMCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020



SIMCLR: Contrastive Learning of Visual Representations

1st transformation

Crop

Cutout

Color

Sobel

Noise

Blur

Rotate

o

Augmentations

-50

Linear evaluation (ImageNet
top-1 accuracy) under
individual or composition of
data augmentations

2nd transformation

SImMCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020



SIMCLR: Contrastive Learning of Visual Representations

Evaluation

70.0
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65.
- Larger batch size
0% - Longer training
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52. 4096
8192
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Training epochs

Ln

=
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SImMCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020



SIMCLR: Contrastive Learning of Visual Representations

Evaluation
xSupemisD ...~ *SimCLR (4x)
3 ~*SimCLR (2x)
= . oCPCv2-L
o
S 70F %simCLR wome  MoCo @0
§ ePIRL-c2x AMDIM
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2 60 *L: “ different self-supervised
z :
& methods (pretrained on
E 55 eRotation ImageNet)
elnstDisc

25 50 100 200 400 626
Number of Parameters (Millions)

SImMCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020



Masked autoencoders are scalable vision learners

PYENENLSA

encoder

—->

decoder

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images to produce representations for recognition tasks.

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022



https://arxiv.org/pdf/2111.06377.pdf

Masked autoencoders are scalable vision learners

Figure 2. Example results on ImageNet validation images. For each triplet, we show the masked image (left), our MAE reconstruction’
(middle), and the ground-truth (right). The masking ratio is 80%, leaving only 39 out of 196 patches. More examples are in the appendix.
TAs no loss is computed on visible patches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible
patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method’s behavior.

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022



https://arxiv.org/pdf/2111.06377.pdf

Masked autoencoders are scalable vision learners

88 - — ux
26 1 » .. VitH
I © WAL
aa | : APPox
L ViT-B T ———— method pre-traindata ViT-B  ViT-L
82 T supervised IN1K w/labels 47.9  49.3
i MoCo v3 IN1K 479 49.3
80 < MAE, INIK BEiT INIK+DALLE 498  53.3
B »— - supervised, IN1K, our impl.
78 - G— - G Supervised, INIK [16] MAE INIK 50.3 53.3
6L 0 [ supervised, JFT300M [16] Table 4. COCO object detection and segmentation using a ViT
0 200 400 600 Mask R-CNN baseline. All entries are based on our implementa-
params (M) tion. Self-supervised entries use IN1K data without labels. Mask
Figure 8. MAE pre-training vs. supervised pre-training, evalu- AP follows a similar trend as box AP,

ated by fine-tuning in ImageNet-1K (224 size). We compare with
the original ViT results [16] trained in IN1K or JFT300M.

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022



https://arxiv.org/pdf/2111.06377.pdf

Summary Point

« Self-Supervision:
— Aform of unsupervised learning where the data provides the supervision
— In general, withhold some information about the data, and task the network with predicting it

— The task defines a proxy loss, and the network is forced to learn what we really care about,
e.g. a semantic representation, in order to solve it

» Many self-supervised tasks for images
 Often complementary, and combining improves performance
* Closing gap with strong supervision from ImageNet label training

— ImageNet image classification, PASCAL VOC detection

* Deeper networks improve performance



Part B

Self-Supervised Learning from Videos



Video

A temporal sequence of frames

What can we use to define a proxy loss?
* Nearby (in time) frames are strongly correlated, further away may not be

» Temporal order of the frames

» Motion of objects (via optical flow)



Outline

Three example tasks:
— Video sequence order
— Video direction

— Video tracking



Temporal structure in videos

Time
Shuffle and Learn: Unsupervised Learning
using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick and Martial Hebert
ECCV 2016

“Sequence” of data

Slide credit: Ishan Misra



Sequential Verification

* s this a valid sequence?

Sun and Giles, 2001; Sun et al., 2001; Cleermans 1993;
Reber 1989 Arrow of Time - Pickup et al., 2014

Slide credit: Ishan Misra



Original

Slide credit: Ishan Misra



Original

Temporally Correct order

Slide credit: Ishan Misra



Temporally Correct order

Temporally Incorrect order

Slide credit: Ishan Misra



Geometric View

Images

Given a start and an end, can this point lie in between?

Shuffle and Learn — |. Misra, L. Zitnick, M. Hebert — ECCV 2016 Slide credit: 1shan Misra



Dataset: UCF-101 Action Recognition

x- 2 >
Apply Eye Makeup Apply Lpot ck | Blow Dry Hair

ol .
Writing On Board!|

UCF101 - Soomro et al., 2012



Positive Tuples Negative Tuples

et al.,2012)
Slide credit: Ishan Misra



Informative training tuples
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Slide credit: Ishan Misra



Input Tuple

fc8

Tuple
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Slide credit: Ishan Misra



Nearest Neighbors of Query Frame (fc7 features)
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Finetuning setup

Self-supervised Pre-train Test -> Finetune

Input Tuple

Action
B _ Labels
-~ Bl Correct/ II_
§ “é Incorrect
- E Tuple

Slide credit: Ishan Misra



Results: Finetune on Action Recognition

Dataset Initialization Mean Classification
Accuracy
UCF101 Random 38.6
Shuffle & Learn 50.2
ImageNet pre-trained 67.1

Setup from - Simonyan & Zisserman, 2014

Slide credit: Ishan Misra



Human Pose Estimation

» Keypoint estimation using FLIC and MPII Datasets

Slide credit: Ishan Misra



Human Pose Estimation

« Keypoint estimation using FLIC and MPII Datasets

FLIC Dataset

MPII Dataset

Initialization Mean PCK  AUC PCK Mean AUC
PCKh@0.5 PCKh@0.5

Shuffle & Learn 84.9 49.6 87.7 47.6

ImageNet pre-train 85.8 51.3 85.1 47.2

FLIC - Sapp & Taskar, 2013 MPII - Andriluka et al., 2014
Setup fom — Toshev et al., 2013

Slide credit: Ishan Misra
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More temporal structure in videos

Self-Supervised Video Representation Learning With Odd-One-Out Networks

Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould, ICCV 2017

/
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More temporal structure in videos

Self-Supervised Video Representation Learning With Odd-One-Out Networks

Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould, ICCV 2017

Predicted odd / Y=2 Initialization Mean
| t , cpe  _as
elemen s Classification
[ fc8 l Accuracy
\ fc7 |
| Fusion Layer [ Ra ndom 38.6
[ fc6 | [ fc6 | [ fc6 |
Shuffle and Learn 50.2
“convi] Ceonvi Cconvi] Odd-One-Out 60.3
Video-clip Encoder Video-clip Encoder Video-clip Encoder
Sy Py o ImageNet pre- 67.1
L\.ﬁ» $< * trained

Correct order x Wrong order v Correct order



Summary

 Important to select informative data in training
— Hard negatives and positives
— Otherwise, most data is too easy or has no information and the network will not learn
— Often use heuristics for this, e.g. motion energy

« Consider how the network can possibly solve the task (without cheating)
— This determines what it must learn, e.g. human keypoints in “shuffle and learn’

» Choose the proxy task to encourage learning the features of interest



Part C

Self-Supervised Learning from Videos
with Sound



Audio-Visual Co-supervision

Sound and frames are:
« Semantically consistent

« Synchronized



Audio-Visual Co-supervision

Objective: use vision and sound to learn from each other

» Two types of proxy task:
1. Predict audio-visual correspondence
2. Predict audio-visual synchronization



Audio-Visual Co-supervision

Train a network to predict if image and audio clip correspond

Correspond? Wﬁ%

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Audio-Visual Correspondence

drum =

guitar —d




Audio-Visual Correspondence

positive

drum =

guitar —d




Audio-Visual Correspondence

positive

drum =

guitar —d




Audio-Visual Correspondence

drum =

guitar —d




Audio-Visual Embedding (AVE-Net)

single frame ___ visual subnetwork

ain.

Correspond?
yes/no

A POOL2

Contrastive
loss based
on distance
1 Dbetween
vectors

audio subnetwork

(CONV3-256

-

-
-

hgw\‘\\
11111

Distance between audio and visual vectors:

« Small: AV from the same place in a video (Positives)
« Large: AV from different videos (Negatives)

Train network from scratch



Background: Audio-Visual

 Andrew Owens ....

— Owens, A., Jiajun, W., McDermott, J., Freeman, W., Torralba, A.: Ambient sound provides
supervision for visual learning. ECCV 2016

— Owens, A., Isola, P., McDermott, J., Torralba, A., Adelson, E., Freeman,W.: Visually
indicated sounds. CVPR 2016

e Other MIT work:

— Auytar, Y., Vondrick, C., Torralba, A.: SoundNet: Learning sound representations from
unlabeled video. NIPS 2016

* From the past:
— Kidron, E., Schechner, Y.Y., Elad, M.: Pixels that sound. CVPR 2005

— De Sa, V.: Learning classification from unlabelled data, NIPS 1994



Dataset

- AudioSet (from YouTube), has labels

- 200k x 10s clips

- use musical instruments classes

- Correspondence accuracy on test set: 82% (chance: 50%)

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Use audio and visual features

What can be learnt by watching and listening to videos?

« Good representations

_ visual
— Visual features .. subnetwork
— Audio features | [ [gl
_ correspond
audio A( — ?vyes/no
__ subnetwork
B = i | =
1s S =l . -

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Results: Audio features

Sound classification

» ESC-50 dataset
— Environmental sound classification
— Use the net to extract features
— Train linear SVM

Sound classification on ESC-50

SVM-MFCC Convolutional Random Forest ConvNet SoundNet Human Qurs
autoencoder (supervised) (supervised by
vision)

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Results: Vision features

ImageNet classification

« Standard evaluation procedure for unsupervised / self-supervised setting
— Use the net to extract visual features
— Linear classification on ImageNet

Method Top 1 accuracy
Random 18.3%
Pathak et al. [2 1] 22.3%
Krihenbiihl ef al. [ 14] 24.5%
Donahue et al. [ 7] 31.0%
Doersch et al. [0] 31.7%
Zhang et al. [34] (init: [14]) 32.6%
Noroozi and Favaro [ | ¥] 34.7%
Ours random 12.9%
Ours 32.3%

« On par with state-of-the-art self-supervised approaches

» The only method whose features haven’t seen ImageNet images
— Probably never seen ‘Tibetan terrier’
— Video frames are quite different from images



Use audio and visual features

What can be learnt by watching and listening to videos?

« Good representations

) visual
— Visual features

. subnetwork
— Audio features 2L | =7
3. -»m[ly[ ((f el -»H
4 correspond
« Intra- and cross-modal retrieval ;‘jbfetwork .{ — ?yes/no
— Aligned audio and visual embeddings [l g H

* “What is making the sound?”
— Learn to localize objects that sound

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Query on image, retrieve audio

Search in 200k video clips of AudioSet

Top 10 ranked audio clips

Query
frame

000000

66%660 |
866600 |

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Use audio and visual features

What can be learnt by watching and listening to videos?

« Good representations
— Visual features
— Audio features

visual
=« __ Subnetwork

) audio
Intra- and cross-modal retrieval subnetwork

— Aligned audio and visual embeddings /"'”m- -
g ) M-mﬂ[n[ (ol ||
1s FEENER i

* “What is making the sound?”
— Learn to localize objects that sound

11111

correspond
. ?yes/no

11

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Objects that Sound

Corresponds: yes/no?

maxpool 14x14
2

Corresponds: where?

AVOL-Net

Corresponds: yes/no?

AVE-Net

—
Euclidean distance
X . 1 convolutional softmax 1x1
Visual embedding A 14x14x2
conv7 1x1x2
L2 normalization L2 normalization 14x14x2

128 128

1ax14x1 per-location
= scores

| all pairwise scalar products

14x14
o i 77 %N
5 s o 7 . .
= = 14x14 spatial grid of Al Single audio
@ Bl Sl @ Apply Visual ConvNet 128-D visual N representation
-g = convolutionally representations 128-D
(]
=
o .g %6‘ convé 1x1x128 ’%‘
£ | Image ConvNet Audio ConvNet | 2 B[ Aoaaxi2s =
14x14x512 14x14x512 @ [ conv5 1xix128 2
4 . . . = 14x14x128 =
Multiple instance learning 5 poola 16x12 | 'S
- 1x1x512 o
.2 | Image ConvNet Audio ConvNet |5
! £ 14x14x512 14x14x512 3
257x200x1 !
-— 257x200x1
224x224x3 E—— =

= 224x224x3

1 log-spectrogram

-

1 second 48kHz audio

1 log-spectrogram

A ——

1 second 48kHz audio

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Localizing objects with sound

Input: audio and video frame
Output: localization heatmap on frame

What would make this sound?

Note, no video (motion) information is used

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Summary: Audio-Visual Co-supervision

Objective: use vision and sound to learn from each other

» Two types of proxy task:
1. Predict audio-visual correspondence -> semantics
2. Predict audio-visual synchronization -> attention

» Lessons are applicable to any two related sequences, e.g. stereo video,
RGB/D video streams, visual/infrared cameras ...
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