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Automatic video understanding

« Huge amount of video is available and growing daily

=3 (® Motion Galler

TV-channels recorded
since 60’s

30k hours of videos

Vst q'.‘
TOURLS uploaded every hour

CCTY SURVEILLANCE CAMERA
770M surveillance cameras
world-wide




Automatic video understanding

 Classification of short clips, i.e. answer phone, shake hands

answer phone hand shake

Hollywood dataset



Automatic video understanding

« Classification of activities, i.e. birthday party, groom an animal

Birthday party Grooming an animal

r—.

TrecVid Multi-media event detection task (MED)



Automatic video understanding

« Car safety & self-driving and video surveillance
— Detection of humans (pedestrians) and their motion, detection of unusual behavior
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Automatic video understanding

« Complete description (story) of a video

As the headwaiter takes them
to a table they pass by the
piano, and the woman looks
at Sam. Sam, with a conscious
effort, keeps his eyes on the
keyboard as they go past. The
headwaiter seats llsa...
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Action recognition - difficulties

« Large variations in appearance
— Viewpoint changes
— Intra-class variation
— Camera motion



Variation in appearance: viewpoint change




Variation in appearance: intra-class variation




Variation in appearance: camera motion




Action recognition - difficulties

« Large variations in appearance
— Viewpoint changes
— Intra-class variation
— Camera motion

« Manual collection of training data is difficult
— Many action classes, rare occurrence
— Pose, object and interaction annotation often a plus

« Action vocabulary is not well defined
— What is the action granularity?
— How to represent composite actions?



Action recognition — approaches

 Action recognition from still images
— Detect human pose + interaction with objects

3 T i ] L- ¥ L% o i 4 1 iy LSS l‘ .
Playing Instrument Reading Taking Photo Riding Ho Walking
PASCAL VOC Human action classification dataset

[Weakly Supervised Learning of Interactions between Humans and Objects, Prest et al., PAMI 2012]



Action recognition — approaches

 Action recognition from still images
— Human pose + interaction with objects

{a) object detection branch

|—> box

S ‘/,—" |
» class s, s,

(b) human-centric branch
» action s
>—
| » target uj

/ b, / (c¢) interaction branch
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[Detecting and Recognizing Human-Object Interactions. G. Gkioxari, R. Girshick, P. Dollar and K. He. CVPR 2018]



Action recognition — approaches

« Motion information necessary to disambiguate actions

Open or close door?

* Motion often sufficient by itself



Motion perception

* Johansson [1973] pioneered studies on sequence based human motion analysis

« Moving light displays enable identification of motion, familiar people and gender

male walker



Overview

Optical flow
Video classification
Action localization

Multi-modal / LLM-based video understanding



Motion field

« The motion field is the projection of the 3D scene motion into the image
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Optical flow

* Definition:
» optical flow is the apparent motion of brightness patterns in the image

« |deally, optical flow would be the same as the motion field
« However, apparent motion can be caused by lighting changes without any actual motion

» For example: a uniform rotating sphere under fixed lighting
vs. a stationary sphere under moving illumination



Estimating optical flow
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Given two subsequent frames, estimate the apparent motion field u(x,y) and v(x,y) between them

Key assumptions for the flow estimation in “classical” approaches

» Brightness constancy: projection of the same point looks the same in every frame
« Small motion: points do not move very far

» Spatial coherence: points move like their neighbors



The brightness constancy constraint

(z,y)
O\‘dlsplacement = (u,v)

o
(z 4+ u,y+v)

I(X,y,f—l) I(X,y,t)

Brightness Constancy Equation:

I(x,y,t =) =I(x+u(x,y),y+v(x,»),t)
Linearizing the right side using Taylor expansion (small motion):
](xayat_l) ~ ](xayat)_l_]x u(xay)_l_]y v(x,y)

Hence, [ ,u+I1 v+1,=0



The brightness constancy constraint

lu+l v+1,=0
 How many equations and unknowns per pixel?

— One equation, two unknowns

 \What does this constraint mean?

VI-(u,v)+1, =0

« The component of the flow perpendicular to the gradient
(i.e., parallel to the edge) is unknown

gradient

If (u, v) satisfies the equation, (u,v)

so does (u+u’, v+v)) if VI-(u',v")=0 (v,V)

(u+u’,v+v’)

edge



The aperture problem

/7

Perceived motion



The aperture problem

\ Actual motion



Solving the aperture problem

 How to get more equations for a pixel?

« Spatial coherence constraint: pretend the pixel's
neighbors have the same (u,v)
— E.g., if we use a 5x5 window, that gives us 25 equations per pixel

_Ix(x1) [y(xl)_ _]t(Xl)_
I.(x,) [y(XZ) U [.(x,)
: : 3 -
1.(x,) 1,(x,) 1,(x,)

B. Lucas and T. Kanade. An iterative image reqistration technique with an application to
stereo vision. In International Joint Conference on Artificial Intelligence,1981.




Lucas-Kanade flow

* Linear least squares problem

_[x(xl) [y(xl)_ _[t(xl)_ —
1.(x,) [y(x2) |:u}:_ 1,(x,) ,,;éz 2(31 - nl:l
1(x,) I,(x,)] 1(x,) ]
Solution given by (A’ A)d=A"b

lelx lely}{u}_ [ZM}

Z]x]y Z]y]y v - Z]J’]t

The summations are over all pixels in the window




Lucas-Kanade flow

Y11 Y I ([u Y11,

Z y Z]y[y 4 _z]y]t_

 Recall the Harris corner detector: M = ATAis
the second moment matrix

* When is the system solvable?

» By looking at the eigenvalues of the second moment matrix

» The eigenvectors and eigenvalues of M relate to edge
direction and magnitude

« The eigenvector associated with the larger eigenvalue points
in the direction of fastest intensity change, and the other
eigenvector is orthogonal to it




Uniform region

— gradients have small magnitude
—small &4, small A,
— system is ill-conditioned



— gradients have one dominant direction
— large A4, small A,
— system is ill-conditioned



High-texture or corner region

— gradients have different directions, large magnitudes
—large A4, large A,
— system is well-conditioned



Optical Flow Results

Lucas-Kanade
without pyramids

Fails in areas of large
oL




Multi-resolution registration




Coarse to fine optical flow estimation

- —— fun iterative L-K ._-

warp & upsampte

- —— run iterative L-K "—-

Gaussian pyramid of image H Gaussian pyramid of image |



Optical Flow Results

L.ucas-Kanade with Pyrami
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Horn & Schunck algorithm

Additional smoothness constraint :
« nearby point have similar optical flow
. additional constraint |[|Vu[% ||[Vv[]* small

e, = ” ((ui + ui) + (vi + vi ))dxdy,

In addition to OF constraint equation term
e = ”(]xu +va+1t)2dxdy,

minimize es+iec A regularization parameter

Coupled PDEs solved with iterative methods + finite differences
B.K.P. Horn and B.G. Schunck, "Determining optical flow." Artificial Intelligence,1981



Horn & Schunck

Works well for small displacements
— For example Middlebury sequence
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Large displacement estimation in optical flow

Large displacement is difficult for optical flow estimation due to:
. locality and smoothness constraints

v

MPI Sintel dataset



Large displacement optical flow

° Classical optical flow [Horn and Schunck 1981]

»  energy: E(w) :/ Ejata + &Egpoomdx
color/gradient constancy smoothness constraint

»  minimization using a coarse-to-fine scheme

° Large displacement approaches:
> LDOF [Brox and Malik 2011]
a matching term, penalizing the difference between flow and HOG matches

E(W) — // Egata + & Egmootn+BEmatchdx

> MDP-Flow2 [Xu et al. 2012]
expensive fusion of matches (SIFT + PatchMatch) and estimated flow at each level

» DeepFlow [Weinzaepfel et al. 2013]
deep matching + flow refinement with variational approach



Experimental results: datasets

e MPI-Sintel [Butler et al. 2012]

» sequences from a realistic animated movie

» large displacements (>20px for 17.5% of pixels)
» atmospheric effects and motion blur




Experimental results: datasets

o KITTI [Geiger et al. 2013]

» sequences captured from a driving platform
» large displacements (>20px for 16% of pixels)
» real-world: lightings, surfaces, materials




Experimental results: sample results
w

Ground-truth

LDOF [Brox & Malik 2011]

MDP-Flow2 [Xu et al. 2012] |

DeepFlow [Weinzaepfel et al. 2013]




Experimental results: sample results

Ground-truth

LDOF [Brox & Malik 2011]

MDP-Flow2 [Xu et al. 2012]

DeepFlow [Weinzaepfel et al. 2013]




Methods — overview

Brightness constancy assumption

+ spatial coherence constraint: Lucas & Kanade, IJCAI'81
+ smoothness constraint: Horn & Schunk, Al'81

+ addition of matching term: Brox & Malik, PAMI'10

recently: deep CNN based approaches



CNN to estimate optical flow: FlowNet

convolutional g
network o

[A. Dosovitskiy et al. ICCV’15]



Architecture FlowNetSimple

FlowNetSimple

*:upconvolved



Architecture FlowNetCorrelation




Synthetic dataset for training: Flying chairs

A dataset of approx. 23k image pairs



Experimental results

Method Sintel Clean Sintel Final

train test train test
EpicFlow [30] 227 412 | as57 629
DeepFlow [35] 3.19 538 | 440 7.21

EPPM [3] - 6.49 - 8.38
LDOF [6] 419 756 | 628 9.12
FlowNetS 450 742 | 545 8.43
FlowNetS+v 3.66 645 | 4.76 T7.67

FlowNetS+ft (3.66) 6.96 | (4.44) 7.76
FlowNetS+ft+v || (2.97) 6.16 | (4.07) 7.22
FlowNetC 431 728 | 587 8.81
FlowNetC+v 3.57 627 525 8.01
FlowNetC+ft (3.78) 6.85 | (5.28) 8.51
FlowNetC+ft+v || (3.20) 6.08 | (4.83) 7.88

S: simple, C: correlation, v: variational refinement, ft:fine-tuning



Experimental results

lmaoes . Ground truth
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Image 1

Image 2

FlowNetC

FlowNet2.0 [lig et al. CVPR’17]

Image 1

Warped

Image 2

Brightness
Error

FlowNetS

bl Large Displacement 4
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FlyingThings3D [Mayer et al., CVPR16]




Stacking of networks

Stack Training Warping | Warping Loss after EPE on Chairs | EPE on Sintel
architecture enabled included | gradient test train clean
Netl | Net2 enabled | Netl | Net2

Netl v - - - v - 3.01 3.79
Netl + Net2 X v X - E v 2.60 4.29
Netl + Net2 v v X - X v 2.55 4.29
Netl + Net2 v/ v X - v v 2.38 3.94
Netl + W + Net2 X v v/ - - v/ 1.4 2.93
Netl + W + Net2 v v/ v v X v 1.96 3.49
Netl + W + Net2 v/ v/ v v v v 1.78 3.33

Importance of warping




Optical flow results on Sintel

FlowFields [2] PCA-Flow [33] FlowNetS [11] FlowNet2
(22.810ms) (140ms) (18ms) (123ms)
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Image Overlay Ground Truth
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RAFT optical flow
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Optical Flow

Context Encoder

» Feature extraction with CNNs

« Comparison between all features in the 2 images - 4D correlation volume
» Multi-scale representation of the 4D correlation volume

« Matching to the features of image 1

* lterative updates which refine the current flow

[RAFT, Z. Teed and J. Deng, ECCV 2020]



RAFT optical flow — results

Ground Truth VCN IRR-PWC Ours

7‘{; v ’( v f:v fiv
. 2 B

Fig. 3: Flow predictions on the Sintel test set.



Video object segmentation

* Segment the moving object in all the frames of a video

DAVIS (ground-truth)



Challenges

« Strong camera or background motion

LDOF flow



Network architecture — MP-Net

Convolutional/deconvolutional network, similar to U-Net



Training data

* FlyingThings3D dataset [Mayer et al., CVPR’'16]

« 2700 synthetic, 10-frame stereo videos of random object
flying in random trajectories (2250/450 training/test split)

« Ground-truth optical flow and camera data available

« Labels for moving object can be obtained from the data

-~ N




Results on FlyingThings3D test set




Motion estimation in real videos

* Flow estimation inaccuracies

DAVIS LDOF MP-Net

LDOF MP-Net



Addition of an objectness measure

« Extract 100 object proposals per frame with SharpMask
[Pinheiro et al., ECCV’16]

« Aggregate to obtain pixel-level objectness scores o;

- Combine with the motion predictions m;

-
’

DAVIS LDOF MP-Net Objectness




FlowNet 2.0 Evaluation

Setting LDOF flow  FLowNet 2.0 flow
MP-Net 52.4 62.6
MP-Net + Obj 63.3 69.0
MP-Net + Obj + CRF 69.7 72.5

Mean loU on DAVIS trainval set



Dense point tracking

» Dense motion from source to target frames
* From a few point tracks (white)
—> dense flow (colors for directions, occlusion with stripes)

[Le Moing et al., Dense Optical Tracking: Connecting the Dots, arXiv’'23]



Dense point tracking

« Sparse point tracks (TAPIR, Co-Tracker)

* Near neighbor point interpolation

« QOptical flow estimation to refine local
neighborhood (RAFT)




Dense point tracking — results

Optical Flow Hybrid

LK
\‘E’

864 milliseconds

AccFlow

166 milliseconds § 186 milliseconds -

Point tracking Hybrid

Ground truth




Dense point tracking — results

hefid CVO (Clean) CVO (Final) CVO (Extended)

EPE | (all/vis/occ) IoU 1 EPE | (all/vis/occ) IoU tTime*| EPE | (all/vis/occ) IoU 1 Time |
RAFT [57] - 2.82/1.70/8.01 58.1 2.88/1.79/7.89 572 0.166 28.6/21.6/41.0 61.7 0.166
E GMA [28] - 290/191/7.63 609 292/189/748 60.1 0.186 30.0/22.8/42.6 61.5 0.186
i RAFT (&) [57] - 248/140/742 576 2.63/157/750 56.7 0634 21.8/154/334 650 4.142
g GMA (&) [28] - 242/1.38/7.14 605 257/152/722 59.7 0.708 21.8/15.7/32.8 65.6 4.796
8‘ MFT [47] - 291 /1391993 194 3.167156/103 195 1330 21479204418 376 18.69
AccFlow [61] - 1.69/1.08/470 48.1 1.73/1.15/4.63 475 0.746 36.7/28.1/529 365 5.598
= 2 PIPs++ [68] 262144  9.05/6.62/21.5 333 949/7.06/22.0 327 9743 184/10.0/32.1 58.7 1922.
3 % TAPIR' [17] 262144 355/134/152 740 436/2.04/16.1 725 ~10° -/ - ] - - ~10°
£ CoTracker [30] 262144 1.51/0.88/4.57 755 1.52/093/438 753 1915 5.20/3.84/7.70 704 1737.
2 s 1024 1.36/0.76 /426 80.0 143/085/4.29 797 0864 528/3.78/7.71 70.8 5.234
= tracking (DOT) 2048 1.32/0.74/4.12 804 1.38/0.82/4.10 80.2 1.652 5.07/3.67/7.34 71.0 9.860
= 4096 1.29/0.72/4.03 804 1.34/0.80/3.99 804 3.152 498/3.59/717 71.1 19.73

“1": evaluation is only performed on a random subset of 2% of the test videos due to extremely slow inference speed.  “%”: the time is the same for Clean and Final sets.



Overview

* Optical flow

» Video classification

* Action localization



Action recognition - tasks

 Action classification: assigning an action label to a video clip

Making sandwich: present
=) | Feeding animal: not present




Action recognition - tasks

 Action classification: assigning an action label to a video clip

Making sandwich: present
=) | Feeding animal: not present




Action classification in videos

Space-time interest points
Dense trajectories
Video-level CNN features

Transformer-based approaches



Space-time interest points (STIP) [Laptev05]

e Space-time corner detector
[Laptev, IJCV 2005]

H = det(p) + ktr3(w)

L1y Il Ll

time




STIP descriptors

Space-time interest points

7 N\

Histogram of Histogram
oriented spatial 7?: of optical |« E| —
grad. (HOG) flow (HOF) |

il nnndid sutilhientandid

3x3x2x4bins HOG 3x3x2x5bins HOF
descriptor descriptor



Action classification

« Bag of space-time features + support vector machine (SVM)
[Schuldt’04, Niebles’06, Zhang’07]

HOG & HOF
patch
descriptors

Collection of space-time patches

Histogram of visual words

—»LD_U_[LD—»

SVM
Classifier




Visual words: k-means clustering

» Group similar STIP descriptors together with k-means

Clustering
—




Action classification

=
| S S

Test episodes from movies “The Graduate”, “It's a Wonderful Life”,
“Indiana Jones and the Last Crusade”




Dense trajectories [wang et al., 1JCV'13]

* Dense trajectories [Wang et al., IJCV’13] and Fisher vector encoding [Perronnin et al. ECCV’10]
- Dense sampling at several scales

Feature tracking based on optical flow for several scales
Length 15 frames, to avoid drift

Tracking in each spatial scale separately
Dense sampling

Trajectory description

in each spatial scale
e
P
-7 |
=hess G —{"e -—_’_-- | .
N | -, S
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Example for dense trajectories




Descriptors for dense trajectory

« Histogram of gradients (HOG: 2x2x3x8)
« Histogram of optical flow (HOF: 2x2x3x9)
* Motion-boundary histogram (MBHx + MBHy: 2x2x3x8)

Tracking in each spatial scale separately Trajectory description

S ———

-——




Descriptors for dense trajectory

* Motion-boundary histogram (MBHx + MBHy: 2x2x3x8)

— spatial derivatives are calculated separately for optical flow in x
and y, quantized into a histogram

— captures relative dynamics of different regions
— suppresses constant motions

Trajectory description

== Optical flow T Honzontal motion boundaries

| Vertical motion boundaries




Dense trajectories

. Advantages:

- Captures the intrinsic dynamic structures in videos

- MBH is robust to certain camera motion

. Disadvantages:

- Generates irrelevant trajectories in background due to camera motion

- Motion descriptors are modified by camera motion, e.g., HOF, MBH



Improved dense trajectories

- Improve dense trajectories by explicit camera motion estimation

- Detect humans to remove outlier matches for homography estimation
- Stabilize optical flow to eliminate camera motion

[Wang and Schmid. Action recognition with improved trajectories. ICCV’13]



Camera motion estimation

. Find the correspondences between two consecutive frames:
- Extract and match SURF features (robust to motion blur)

- Use optical flow, remove uninformative points

« Combine SURF (green) and optical flow (red) results in a
more balanced distribution

. Use RANSAC to estimate a homography from all feature matches

al e bkl [

Ll L

Inlier matches of the homography



Remove inconsistent matches due to humans

« Human motion is not constrained by camera motion, thus
generates outlier matches

« Apply a human detector in each frame, and track the human
bounding box forward and backward to join detections

. Remove feature matches inside the human bounding box
during homography estimation

Inlier matches and warped flow, without or with HD



Remove background trajectories

. Remove trajectories by thresholding the maximal magnitude
of stabilized motion vectors

« Our method works well under various camera motions, such as pan,
zoom, tilt

Successful examples Failure cases
] e

i ot

Removed trajectories ( ) and foreground ones (green)

. Failure due to severe motion blur; the homography is not correctly
estimated due to unreliable feature matches



Fisher VVector [sanchez et al, 2013]

« Bag of features: stores the number of features assigned to each cluster center

* Drawbacks:
— Needs more words to refine the representation
— This directly increases the computational cost
— Also leads to many empty bins: redundancy




Fisher VVector [sanchez et al, 2013]

* Fisher vector: also stores mean and variance of the features per cluster

 Even when the counts are the same,

the position can vary

« Advantages:
— More information for the same visual word
— Does not increase compute significantly
— Leads for high dimensional features vectors




Evaluation datasets

Hollywood dataset [Marszalek et al.’09]

~

answer phone

fight person

Hollywood?2: 12 classes from 69 movies, report mAP



Evaluation datasets

HMDB 51 dataset [Kuehne et al.’11]

r . L
”
ﬁ

push-up cartwheel sword-exercice

HMDBS51: 51 classes, report accuracy on three splits



Evaluation datasets

UCF 101 dataset [Soomro et al.’12]

haircut

ice-dancing

UCF101: 101 classes, report accuracy on three splits



Evaluation of the intermediate steps

| HOG | HOF [ MBH |HOF+MBH

DTF 38.4% 39.5% 49.1%  49.8% 52.2%
ITF 40.2% 48.9% 521% 54.7% 57.2%

Results on HMDBS1 using Fisher vector

. Baseline: DTF = "dense trajectory feature"

. ITF ="improved trajectory feature”

« HOF improves significantly and MBH somewhat
« Almost no impact on HOG

« HOF and MBH are complementary, as they represent zero and first order
motion information



Impact of feature encoding on improved trajectories

Datases
human |human

Hollywood?2 63.6% 66.1% 66.8%
HMDB51 55.9% 89.3% 60.1%
UCF101 83.5% 85.7% 86.0%

Compare DTF and ITF with and without human detection
using HOG+HOF+MBH and Fisher encoding
« IDT significantly improvement over DT

« Human detection always helps. For Hollywood2 and HMDB51, the
difference is more significant, as there are more humans present.



TrecVid MED 2011

» 15 categories

Wedding ceremony Working on a Birthday party
wood project



TrecVid MED 2011

15 categories

~100 positive video clips per event category, 9600 negative
video clips

Testing on 32000 videos clips, i.e., 1000 hours

Videos come from publicly available, user-generated
content on various Internet sites

Descriptors: MBH, SIFT, audio, text & speech recognition



Quantitative results on TrecVid MED’11

Performance of all channels (mAP)

Channel mAP
Motion 44 .65
Static 33.97
Audio 18,158
OCR. 10.85
ASR 8.21

Visual=Motion+4Static 47 .22
Visual+Audio 50.41
Visual4+OCR 48.97
Visual4+ASR 48.28

Visual+Audio+OCR4+ASR 52.28




Quantitative results on TrecVid MED’11

2
Performance of all channels (mAP) =..
Channel mAP ff] ::a
Motion 44 65 30.7
Static 33.97 25.9
Audio 1815 33.3
OCR. 10.85 10.1
ASR 8.21 3.6
Visual=Motion4Static 47.22 34.8
Visual+Audio 50.41 A7.7F
Visual4+OCR 48.97 35.8
Visual4+ASR 48.28 35.0

Visual+Audio+OCR4+ASR 52.28 48.4




Quantitative results on TrecVid MED’11

Performance of all channels (mAP) =.. =K
Channel mAP Ao A
Motion 44 65 30.7 42.6
Static 33.97 259 43.6
Audio 18.15 33.3 43.3
OCR. 10.85 10.1 32:.1
ASR 821 3.6 39.2
Visual=Motion4Static 47.22 34.8 47.5
Visual+Audio 50.41 47.7 54.5
Visual4+OCR 48.97 35.8 50.8
Visual4+ASR 48.28 35.0 b4.5
Visual+Audio4+OCR+ASR 52.28 48.4 57.2




Quantitative results on TrecVid MED’11

Performance of all channels (mAP) Ef i oz
=5 o& &8

Channel mAP Ao As S
Motion 1465 30.7 426 225
Static 33.97 259 436 21.5
Audio 18.15 33.3 433 11.2
OCR. 10:85 10.1 32.1 194
ASR 821 36 39.2 6T
Visual=Motion4Static 4722 34.8 47.5 27.8
Visual+Audio 5041 A7.7 54.5 27.3
Visual4+OCR 48.97 35.8 50.8 35.7
Visual+ASR 48 28 35.0 H4.5 28.8
Visual+Audio+OCR4+ASR 52.28 48.4 57.2 35.4




Experimental results

« Example results

rank 3

Highest ranked results for the event «horse riding competition»



Experimental results

« Example results

rank 1 rank 2 rank 3

Highest ranked results for the event «tuning a musical instrument»



CNN based methods

Spatial stream ConvNet

conv1 || conv2 || conv3 || convd || conv5 || fullé fullz
TxTx98 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
| norm. norm. pool 2x2
pool 2x2 || pool 2x2

Two-Stream Convolutional Networks
for Action Recognition in Videos
[Simonyan and Zisserman NIPS14]

_ single frame

Temporal stream ConvNet

convi || conv2 [ conv3 || convé4 || conv5 || fullé fulz
Tx7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. ||pool 2x2 pool 2x2
pool 2x2

Learning Spatiotemporal Features with
3D Convolutional Networks
[Tran et al. ICCV15]

Inception Module (Inc.)

Quo vadis action recognition? A new
model and the Kinetics dataset
[Carreira et al. CVPR17]




Recent CNN methods

Two-Stream Convolutional Networks

for Action Recognition in Videos

[Simonyan and Zisserman NIPS14]

input
video

. Ty P Tiaty T Py B -8
4 ]
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F
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A
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single frame

multi-frame
. optical flow

Spatial stream ConvNet

conv1 || conv2 || conv3 || convd || conv5 fulle full7 ||softmax
TxTx96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048

stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

norm. norm. pool 2x2
pool 2x2 | | pool 2x2

Temporal stream ConvNet

convil || conv2 || conv3 || conv4 (| conv5 fullé full? ||softmax
Tx7=96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

narm. || pool 2x2 pool 2x2
pool 2x2

class
score

fusion




CNN based methods

Learning Spatiotemporal Features with 3D Convolutional Networks [Tran et al. ICCV15]

x
F

output K output
L L output

(3) 20 corvolution (D) 20 convolution on multipie frames (C) 30 convoiution

Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. c¢) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

3x3x3 filter

T = [20,40,60,80,100]} frames

ij““@“-@ @ 2048 2048 ,"';

# rd 4
. ' classes ", ”,
) ,f) iV
- P . o/
# - : s~ 4
(0 @
f", 58x58xT 29x29xT 7x7xIT/4] 3x3x|T/8] 1x1x|T/16] {/ /'
- - - - ’
i input convl conv3 conv4 convs  fcb {4 fc8 1,’




CNN based methods

Quo vadis, action recognition? A new model and the Kinetics dataset
[Carreira et al. CVPR17]

Inflated Inception-V1 Inception Module (Inc.)

Rec. Flald: Rec. Fleld:
711,11 11,27.27

Video

v
stride 2

Ing, *— Ing, *— Inc, *—1 Inc = Inc

Rec. Field:
23,7575
Rec. Field: Rec. Field:
50,219,219 99,639,539

Inc. —.—L~ Inc. = Inc. —“—Prediclions

Pre-training on the large-scale Kinetics dataset 240k training videos
—> significant performance grain




Kinetics dataset

 Kinetics-700 dataset

— 700 action classes
— 650 00 clips
— manual verification after automatic collection from YouTube

] ] (1) brushing hair
(j) playing trumpet



Transformer based models

« Transformer models are great for processing sequences
— Text, images, videos can be expressed as sequences
— Relies on self-attention between all tokens of a sequence [Vaswani et al., Neurips'17]

(=) (=) (=) - s



Vision Transformer (ViT)

« Fully transformer based architecture for image classification [a. bosovitskiy et al.,
ICLR’21]

— Image encoded as sequence of 16x16 patches
— Tokenization by linear projection

Vision Transformer (ViT)
MLP
Head
l
Transformer Encoder
s e - 60 00 €D 8 8) 8) B)ED )
* Extra learnable
[class] embedding Lmear Projecuon of Flanened Patches
SEE |

i nHIIIM%HWWE
s



ViViT: A Video Vision Transformer

» Extend Vision Transformer ViT (for static images)to videos

» To handle large number of tokens, explore more efficient
factorised attention variants

EANR R LD

11111

Transformer|Encoder
~
Position + Token| [ "1;
Embedding
B— T
Layer Norm
", SN
8 > Lx Self-Attention|
g
4
—,{ Embed to —.8—» Mull-Head
tokens Dot-Product
. Attention
:  v¥ao
—.8_. Layer Norm
o ~

------------------

------------------

[ViVIT, A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lucic, C. Schmid, ICCV’21]



Input encoding — uniform frame sampling

« Sample frames, extract 2D patches and linearly project
» Effectively consider a video as a “big image”

—




Input encoding — tubelet embedding

« Extract 3D spatio-temporal tubelets + linear project into tokens
« Captures temporal information in the tokenization stage
« Works better than uniform sampling

@




ViViT: A Video Vision Transformer

* An alternative to 3D convolutional neural networks
— Extract 3D tubelets to encode spatio-temporal “tubes” into tokens
— Encode tubes into embedding by linear project and add position
— Train a transformer to predict classes

« Quadratic complexity in tokens

Transformer |Encoder

Embed to
tokens

-
-
-
-
-
-
-
-




ViVIiT: Factorized Encoder

« Separate encoders for spatial and temporal information
— Reduces complexity, compute, less overfitting
— Spatial encoder is initialised from a pretrained-ViT model
— “Late fusion” of spatial and temporal information

5 Temporal Transformer Encoder Head ]—’Class
eg
+3 c -
12000 g v
SE wE
E w
=
Spatial Transformer Spatial Transformer Spatial Transformer

S Encoder Encoder Encoder

S o

(=

ﬁli o - 80 ole) -8 -~ 0

53 - Ve

sE

8

o

Embed to tokens ]

i |




Comparison of model variants

FLLOPs Params Runtime

K400 EK .
(x107)  (x10%  (ms)
Model 1: Spatio-temporal 80.0  43.1 455.2 88.9 58.9
Model 2: Fact. encoder 78.8 437 284.4 100.7 17.4
Model 2: Ave. pool baseline  75.8  38.8 283.9 86.7 17.3

Spatio-temporal model better for large datasets (K400)
Factorized encoder faster than spatio-temporal model
Factorized encoder better for small datasets (EK:EpicKitchen)
Spatio-temporal model > average pooling



Impact of regularization

« Use pretrained ImageNet model for initialization
« Regularization with data augmentation and stochastic depth

Top-1 accuracy

Random crop, flip, colour jitter 38.4
+ Kinetics 400 initialisation 39.6
+ Stochastic depth [2£] 40.2
+ Random augment [10)] 41.1
+ Label smoothing [5%] 43.1
+ Mixup [7Y] 437

5.3% gain on Epic Kitchens



Comparison to state of the art

(a) Kinetics 400 (b) Kinetics 600
Method Topl Top5 Views Method Topl Top5 Views
bIVNet [16] 735 912 - AttentionNAS [73] 798 944 -
STM [30] 737 916 - LGD-3D R101 [4¥] 81.5 956 -
TEA [3Y] 76.1 925 10x 3 SlowFast R101-NL [18]  81.8 95.1 10x 3
TSM-ResNeXt-101 [40] 76.3 - - X3D-XL [17] 819 955 10x 3
[3D NL [72] 777 933 10x 3 TimeSformer-HR [”] 824  96.0 -
CorrNet-101 [67] 79.2 = 10 x 3 ViViT-L/16x2 825 956 4x3
ip-CSN-152 [63] 792 938 10x3 ViViT-L/16x2 320 830 957 4x3
LGD-3D R101 [4] 794 944 =
SlowFast R101-NL [ 18] 798 939 10x 3 ViViT-L/16x2 (JFT) 843 962 4x3
X3D-XXL [17] 804 946 10 x 3 ViViT-H/16x2 (JFT) 858 96.5 4x 3
TimeSformer-L [] 80.7 947 1x3
ViViT-L/16x2 80.6 947 4 3 3
ViViT-L/16x2 320 81.3 947 4% 3

Methods with large-scale pretraining

ip-CSN-152 [63] (IG [41]) 825 953 10x 3
ViViT-L/16x2 (JFT) 828 955 4x3
ViViT-L/16x2 320 (JFT) 835 955 4x3
ViViT-H/16x2 (JFT) 848 958 4x3

BIKING THROUGH SNOW. BOOKBINDING



A multimodal (audio-visual) transformer

« Extend ViViT to multimodal information by adding audio
* Audio is represented by a spectrogram

__________ N B

Multimodal Fusion Transformer

Mutimodal Video e ][ T2 .. [ FsNy )... [ Fsne )[ TGS ][ D -

Video Projection E Rh\ Audio Pro}echon E r,]

RGB frame patches Audlo spectrogram patches

[Attention bottlenecks for multimodal fusion, A. Nagrani, S. Yang, A. Arnab, A. Jansen, C. Schmid, C. Sun, Neurips’21l]



Late fusion

* Multimodal inputs Late Fusion
— Heterogeneity of inputs (RGB frames, audio Classifier || Classfier
spectrograms)
— Specialized architectures |
— Different datasets and evaluation Eneoder Encoder
benchmarks
. Tl
* The “dominant” paradigm

— Different encoders
— Output scores a fused at the end



Vanilla Multimodal Transformer

Tokenize RGB frame and spectrogram patches
Feed all tokens to a transformer
Pairwise self-attention between all tokens (early fusion)

| Video Projection E

.'-'- _______________________ _.5'_15___,_i _________________________ e ."_.:
o T REEE IIII
" RGB frame patches Audio spectrogram patches

Scales quadratically with sequence length
Video has a lot of redundancy



Multimodal Bottleneck Transformer

 Introduces a number of bottleneck tokens (B=4)
* Full pairwise self attention within a modality
« Attention between the vision/audio tokens and the bottleneck tokens

................................................................................................................

E ; . !
__V_'_d_e?_ Projection = pp._.. Multimodal O TIOEETON e pec

EEEE 7 EEE

?




Do all layers need to be cross-modal?

« Restrict cross-modal information to later layers (mid-fusion)

* The layer we introduce cross-modal interactions is called
the “fusion layer”
+ Allows early layers to “specialize” to unimodal patterns

Bottleneck Fusion Bottleneck Mid Fusion

=D SN

RGB frames audio spectrogram RGB frames audio spectrogram



Improved performance and efficiency

« Mid Fusion outperforms early and late fusion on most datasets

Attention Bottlenecks =A=Vanilla Cross-Attention

" 200 =~
42 ’+ r’*\ \"'s.
- . ~
- ~. E \t\
4’ * O \\.
40 L7 =150 L YO
_..+// U] '“\.,\
+_._-—-'+" Y
38— ! ) ! ! ! ! 100- I 1 1 1 1 1 \?
6 8 10 12 0 2 4 6 8 10 12
Fusion Layer L¢

T
0

2 4
Fusion Layer L¢

Results for Audio-Set and 4 bottleneck tokens
- Improved performance, lower compute



3 Action Recognition

Kinetics
Moments in Time

Experimental results

Two different video classification tasks

Epic Kitchens

L D)

Audioset

VGGSound
Kinetics-Soul

Human sounds

t— Human voice

t— Whistling

| Respiratory sounds

t— Human locomotion

t— Digestive

I~ Hands

I— Heart sounds, heartbeat

I— Otoacoustic emission

‘— Human group actions

Source-ambiguous
sounds

}— Generic impact sounds
I— Surface contact

I— Deformable shell

}— Onomatopoeia

I— Silence

L— Other sourceless

Sound Event Classification

Animal

|— Domestic animals, pets

working animals
'— Wild animals

Sounds of things

|— Vehicle
|— Engine

[— Domestic sounds,
home sounds

[— Bell

[— Alarm

— Mechanisms
[— Tools

|— Explosion
— Wood

[— Glass

L Liquid

|— Miscellaneous sources

'— Specific impact sounds

|— Livestock, farm animals,

Music

(— Musical instrument
— Music genre

l— Musical concepts
— Music role

'— Music mood

Natural sounds

— Wind
— Thunderstorm
— Water

'— Fire
Channel, environment
and background

— Acoustic environment

— Noise

'— Sound reproduction



Experimental results

Model Training Set A only Vonly AV Fusion
GBlend [ ] MiniAS 29.1 22.1 37.8
GBlend [ ] FullAS-2M 324 18.8 41.8
Attn Audio-Visual [ /]  FullAS-2M 38.4 25.7 46.2
Perceiver [ "] FullAS-2M 38.4 25.8 442
TMBT T T MiniAS™ ~ ~ " 313~ 277 T 439
MBT AS-500K 44.3 323 521

Table 1: Comparison to the state of the art on AudioSet [ "]. We report mean average precision
(mAP). For audio-visual fusion, our method outperforms others that use the entire AudioSet training
set (almost 2M samples), while we train on only 500K.

Model Modalities Verb Noun Action
Damenetal. [| 7] A 421 215 14.8
AudioSlowFast [ /]t A 465 2278 154
TSN [ 7] V,F 602 460 332
TRN [7] V.F 659 454 353
TBN [ ] A, V,F 66.0 472 36.7
TSM[17] V,F 67.9 490 383
SlowFast [ '] v 65.6 500 385
"MBT AT 443 7224 7 130
MBT v 62.0 564 40.7
MBT AV 64.8 580 43.4

Table 2: Comparison to the state of the art on Epic Kitchens 100 [ ']. Modalities (Mods) are A:

Audio, V: Visual, F: Optical flow.

Audioset
Late 49.2
Fusion
VIET 52.1
(ours)

Epic-Kitchens

Late Fusion 37.9

MBT (ours) 43.4



Attention Heatmaps

Mid Frame Vanilla Fusion

Pianemusic

MBT: focus on smaller regions, sound sources (mouth, fingertips)



Overview

Optical flow
Video classification
Action localization

Multi-modal / LLM-based video understanding



Spatio-temporal action localization
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Spatio-temporal action localization

« Space-time sliding window
— Spatio-temporal features selection with a cascade, Laptev & Perez, ICCV'07

features: fy, f2.f3,... < Hist. of Gradient
A TN st of Optic Flow

AT

X
(;:) AX ——"" Key-rame LI



Spatio-temporal action localization

« Human tubes + tube classification
« Human focused action localization in video, Klaser et al., SGA10




Spatio-temporal action localization

* Frame-level candidates

— Compute object proposals (EdgeBoxes [Zitnick et al. 2014])
— Extract CNN features (training similar to R-CNN [Girshicket al. 2014])
— Score each object proposal

CNN features

Backgr. 0.01
spatial-CNN —p Diving 0.9
JRunning 0.02
—>
@
@
motion-CNN —p *

[Gkioxari and Malik’15, Simonyan and Zisserman’14]



Spatio-temporal action localization

« Learning to track frame-based proposals [Weinzaephel et al., ICCV’15]

frame-level object proposals and CNN action classifier
[Gkioxari and Malik, CVPR 2015]

temporal detection

tracking best candidates
sliding window

Instant & class level tracking

Y

scoring with
CNN + IDT




Action recognition - temporal context

Ambiguous action given only one frame

Jump

-~

Sitting down

)

Standing up

Walk



Action recognition - temporal context

Ambiguity resolved given several frames

Sitting down

Standing up




ACtion tubelet detector

Classify and regress spatio-temporal volumes

Anchor cuboids: fixed spatial extent over time

Regressed tubelets: score + deform the cuboid shape

[Action tublet detector for spatio-temporal action localization, V. Kalogeiton et al., ICCV’17]



ACtion tubelet detector

Use sequences of frames to detect tubelets: anchor cuboids

~. VGG conv
- layers

-~ extra conv
_layers

C regression and
;!‘ . classification ‘

e " convlayers | &
4—_/ : Iy

’ Regression
1 (4K outputs per anchor)

Classification
(C+1 outputs per anchor)

Anchor
cuboid

SSD detector [Liu et al., ECCV’16]



ACtion Tubelet detector

Use sequences of frames to detect tubelets

i "/\‘\VGG conv
7 ﬁ;/'.;‘  layers

2 \extra conv
“ layers

L\ 7 regression and
K g . classification

" % g . conv layers

s : Regression
(4K outputs per anchor)

Classification
(C+1 outputs per anchor)

Regressed
Tubelet

SSD detector [Liu et al., ECCV’16]



Example results

Detections Correct . Missed
Labels ] Correct . Wrong



1

6

Example results

Detections

Labels

Correct - Missed
] Correct - Wrong



. Ground truth

. Correct Detections




Datasets for action localization

— UCF-101 (24 sports actions, 3207 almost-trimmed low-res. videos)

basketball long jump rope cI-imbing

— J-HMDB (21 daily actions, 928 trimmed videos, avg length: 1.5s, low resolution)
TR B

jumping pushing

— Limited by diversity, duration and resolution



Atomic Visual Actions (AVA) dataset

« Towards a definition of atomic actions + large scale collection
- Atomic Visual Actions (AVA) dataset

Left: Sit, Talk to, Watch; Right: Crouch/Kneel,  Left: Stand, Carry/Hold, Read; Middle: Stand,
Listen to, Watch Take (object) from; Right: “tand, Give (object) to

[AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions, CVPR’18]



Ava dataset — atomic actions

» Three categories of atomic actions:
1) Pose of the person, eg., stand, sit, walk, kneel, swim
2) Interactions with objects, eg., drive, carry, pick up
3) Human-human interactions, eg., talk to, hug, fight

« Multiple labels per person

 Exhaustive annotation of all humans



Ava dataset

192 videos with annotations for 15 minute intervals
Annotation every 1 seconds

80 atomic actions in 107k movie segments with 740k labels with multiple
labels per person

Exhaustive annotation of all humans
— Human are detected automatically and corrected manually



Action Detection Model — Faster R-CNN+3DCNN
y

ROl g Ag S

Pooling . Pooling
’

Mixed 4e

TxHxWx3
RGB frames

Region Proposal Classification

Box
Refinement

RGB ResNet-50

“' =

Mixed 4e TxH xW' xC H xW xC

frame

TxHxWx2
Flow frames

[AVA, C. Gu, C. Sun et al. CVPR'18]



Impact of temporal extent on 3D convolutions

Temp. context UCF101-24

5 RGB + 5 Flow 76.1% 13.4
10 RGB + 10 Flow 78.0% 13.9
20 RGB + 20 Flow 78.3% 14.9
40 RGB + 40 Flow 76.0% 16.2

50 RGB + 50 Flow 73.2% 15.8



Spatio-tempora

action localization

Frame-mAP JHMDB | UCF101-24
Actionness [4 1] 39.9% -
Peng w/o MR [29] 56.9% 64.8%
Peng w/ MR [29] 58.5% 65.7%
ACT [40] 65.7% 69.5%
3D CNN + Faster-RCNN | 73.3% 76.3%
Video-mAP JHMDB | UCF101-24
Peng w/ MR [29] 73.1% 35.9%
Singh et al. [37] 72.0% 46.3%
ACT [40] 73.7% 51.4%
TCNN [16] 76.9% -

3D CNN + Faster-RCNN | 78.6% 59.9 %




Failure modes on AVA

FA for “hand shake™: FA for “smoke™: FA for “write”:
Reaching out arm Hand covering mouth Looking downwards



Failure modes on AVA

FA for “hand shake™: FA for “smoke™: FA for “write”:
Reaching out arm Hand covering mouth Looking downwards
Other person does not No cigarette in hand Dining table with

reach out arm plates



A structured model for action detection

Actor
Temporal
Association

(c) Object Detection

7§

(a) Input Video
— - —

(b) Temporal Feature Extraction

(d) Actor Tubelets (e) Relation graph Reference Frame

%

Hold\
Output:

01 Actor 1 is talking and
holding an object

[A structured model for action detection. Y. Zhang et al., CVPR’19]



A structure model for action detection

Temporal dependency learning

» Construct tublets based on appearance similarity of actors
— with Siamese network + triplet loss

« Learn how to combine features in the tublet with graph convolutions

Relation modeling
« Graph of model human-human and human-object interactions
« Soft-assignment to integrate the features



Quantitative results

Single Frame model 1] 14.2
ACRN [ 17.4

Our Baseline 16.7

Person similarity graph on ROls 13! 20.1
Object similarity graph on ROIs [3] 20.3
Actor tubelet model 21.1

Actor tubelet + hard relation graph 21.5
Actor tubelet + soft relation graph 22.2

[1] C. Gu et al. AVA: A video dataset of spatio-temporally localized atomic visual actions. CVPR, 2018.
[2] C. Sun et al. . Actor-centric relation network. ECCV, 2018.
[3] X. Wang and A. Gupta. Videos as space-time region graphs. ECCV, 2018.



lllustration of temporal dependency learning

Baseline
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emporal dependency learning
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/ You c in't get away from me!

Correct label: fall down



lllustration of relation modeling

Actor and Object Detection Soft Relation Graph

(Eat)

Baseline: hold Relational model: eat



STAR - end-to-end training transformers

Predicted labels

s : [ Class head ] ———=:::?"_‘“-“ﬁ“‘ ) walk

Kl sit

Query SA H T - 1B \ o] < o
§ : 1 Bt 2

.
: .8
: : \ 1
: [ Factorized CA ].._.p .

: : |

=g féﬁﬁ@

Predicted tubelets

For each frame outputs tubelets, i.e., linked bounding boxes with action class probabilities

» Transformer-based vision encoder which outputs a video representation

» Learn queries, which are factorized into spatial and temporal components, similar to DETR for images
» Decoder (L layer with query self-attention and factorized cross-attention)

* Followed by a box and class prediction head

[STAR, Gritsenko et al., arXiv, 2023]



STAR — experimental results

trampoline jumping, trampoline jJumping
Results on UCF 101

stand, watch, listen to
watch, listen to, sit walk, watch, listen to

Results on AVA



STAR - experimental results

UCF101-24 JHMDBS51-21

Pretraining fAP  vAP20 vVvAP50 vAP50:95 fAP vAP20 vAP50 Backbone
ACT [23] IN1K 67.1 i 51.4 25.0 65.7  74.2 73.7 VGG
MOC [31] INIK —- COCO 78.0 82.8 53.8 28.3 70.8  77.3 0.2 DLA34
Unified [7] K600 79.3 - E - i - E SlowFast
WOO [#] K600 - - - = 80.5 - - SlowFast
TubeR [65] IG65SM—K400  83.2 83.3 58.4 28.9 - 87.4 82.3  CSN-152
TubeR with flow [65] K400 81.3 85.3 60.2 29.7 B 81.8 80.7 I3D
STAR/B (ours) IN21K—K400 87.3 87.7 66.2 30.9 86.6  89.1 88.5 ViViT/B
STAR/L (ours) CLIP—K700 90.3 88.0 71.8 35.2 921 931 92.6 ViViT/L

Comparison to the state of the art



Overview

Optical flow
Video classification
Action localization

Multi-modal / LLM-based video understanding



Why multimodal data?

* Precise understanding of the video content
> Requires access to all modalities simultaneously

Is this Indian?




Why multimodal video representation?

» Large-scale cross-modal supervision
- No manual annotation required

Training on the HowTo100M [1] dataset

m(ﬁ
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of wood clamg ! G ALK ‘J' T .
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[HowTo100M. A. Miech, D. Zhukov, JB Alayrac, M. Tapaswi, |. Laptev and J. Sivic, ICCV 2019]



VideoBERT: learning multimodal video representation

« Learning from visual video and speech transcribed with ASR

|
b

g_‘, e

But in the meantime, you're just kind of
moving around your cake board.

« BERT model learns correspondence between video and speech

« Learning from large-scale data without manual annotations

[VideoBERT, C. Sun et a., ICCV’'19]



Large-scale training data without manual annotations

‘but in the meantime, you're just kind of moving
around your cake board and you can keep reusing
make sure you're working on a clean service so you

can just get these all out of your way but it's just a
really fun thing to do especially for a birthday party.”

“apply a little bit of butter on one side and place a
portion of the stuffing and spread evenly cover with
another slice of the bread and apply some more butter
on top since we're gonna grill the sandwiches.”

e ~320K cooking/recipe videos on YouTube
e ~1000 days in total, average length is ~4 mins

e ~120K videos with English ASR outputs



State-of-the-art for NLP: BERT

[cute] [loves]
* *
Input lCLSJW my || dog is [ [SEP] || he ( M playw ##ingw [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E##lng E[SEP]
- + + + + +  + o+ + + +
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ + + <+ + + + + + + +
Position
Embeddings EO El E2 E3 E4 ES E6 E7 E8 E9 E10
Two pre-training tasks: Network:
e Masked language modeling o Stacked Transformers
e Next sentence prediction e Large amount of data

[1] Figure credit: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv: 1810.04805




Self-supervised pre-training for NLP

Input corpus:

Apply a little bit of butter on one side and place a portion of the stuffing.
Spread evenly cover with another slice of the bread and apply some
more butter on top since we're gonna grill the sandwiches.

Masked language modeling (MLM):

Apply a little bit of [mask] on [mask] side and place a portion of the
stuffing. Spread [mask] cover with another slice of the [mask] and
apply some more butter on top since we're gonna grill the [mask].



BERT model

BERT: Bidirectional Encoder Representations from Transformers [peviin etal., NAACL19]

" NSP Mask LM Mask LM \ ‘MNLI NER" " SQuAD Start/End Span

g SN . s ' | — ——— "
) Gl &) - Gl G0
S P »
BERT .......... .. .> « BERT
). GGl G ). ElEE]. &
[ ‘ ar | u n.;wfan\ /"""1 |s|:r| .“mn“___ ‘/t.un\‘
Masked Sentence A Masked Sentence B .‘ \ ‘. Question > Paragraph
Unlabeled Sentence A and B Pair 7 Question Answer Pair

Pre-training Fine-Tuning



VideoBERT

([CLSﬂ (Placew ( the w (steakw ( in W( the w (pan w ( [>] w @ 500 3 ‘_
N>
T1 T2 Ta T4 TS TG T7 TB TQ T10 T11 T12 T13 T14

VideoBERT
E[CLS] EPiace Em E[MASK] E Ethe E E|>] E {- E[MASK] E (-) (-) E (D) E{SEP]
L[CLS]J LPIace)L the JI[MASK] L in Jk the JLpan Jk >] J | Il[MASK] | || |l “ [SEP] l
Text (ASR) Video (3D-conv features)

« Multimodal transformer: excellent way of combining multiple modalities
« Masked ‘language’ modeling as in BERT, video-speech alignment
» Video representation with 3D-convolutions + clustering




Video representation

3D convolutions for 1.5 second video clips (S3D), 1024-dim features vector
Video tokenization by clustering

Hierarchical k-means: depth of 4, branch size of 12 (20736 clusters)
High-level semantics preserved after tokenization

Original: Centroids:




VideoBERT

Training on 300k cooking videos Zero-shot prediction

“Keep rolling tight and squeeze the Verb: make, Noun: pizza
air out to its side”



Zero-shot prediction

Method Verb Object
(top-5 %) | (top-5 %)
S3D (supervised) 46.9 30.9
VideoBERT 43.3 33.7

Results on YouCook Il dataset

Pre-training Verb Object
size (top-5 %) | (top-5 %)
10K 15.5 17.8
50K 15.7 27.3
100K 24.5 30.6

300K 43.3 33.7

o VideoBERT learns video-language correspondence

o Close to fully-supervised accuracy

o More data improves the performance (not saturated yet)




Fine-tuning on downstream tasks

* For captioning cooking video on YouCook?2

Method BLEU-3 | BLEU-4 | METEO | ROUG | CIDEr
R E-L
Zhou et al. 1.42 11.20
(CVPR’18)
S3D 6.12 3.24 10.00 26.05 0.35
VideoBERT 6.80 4.07 10.99 27.51 0.50

o Effective and outperforms S3D features

e Pre-training helps!




Video captioning - examples

GT: add some chopped basil leaves into it GT: cut the top off of a french loaf
VideoBERT: chop the basil and add to the bowl VideoBERT: cut the bread into thin slices
$3D: cut the tomatoes into thin slices S3D: place the bread on the pan

GT: cut yu choy into diagonally medium pieces GT: remove the calamari and set it on paper towel
VideoBERT: chop the cabbage VideoBERT: fry the squid in the pan
S3D: cut the roll into thin slices S3D: add the noodles to the pot



Multimodal transformers — different models / tasks

« Image / video question answering

Who is wearing glasses? Where is the child sitting?
n

'Y

Is the umbrella upside down? How many children are in the bed?
no

_ i 2 1
g -
i ¥ g
s | =

Example model: FrozenBlim [A.Yang et al., Neurips’22]




Frozen Bidirectional Language Model (BiLM)

* Pre-trained large-scale language model + adapters

Cross-modal Training

el s I FrozenBiLM
data: -‘—:\" . ’
Web- - R _ : —;

scraped |- % o, L BT 2

Video + Little cute toy poodle dog
Caption running fast on the beach.

« Adapters are trained on web-scraped video/caption dataset
— WebVid10M dataset with 10M video-text pairs

[Zero-shot video question answering via frozen bidirectional language models. A. Yang et al., Neurips'22l]



FrozenBiLM

Frozen cake weddmg

t’1 t’z t'3 t’4 t’s t's 8 t' 9 t,10 t 11 / Add & Norm +

*
Adapter 4

vy vr
Visual-Text Projection” .. Visual-Text Projection P
ust i urt ) i B2 & & S tg |tz |tg |t tw tu Add 8;Norm &N

Adapter 4

IEEREEREEED

The bride and the groom [MASK] the [MASK] at the [MASK]

o Caption X
Frame 1 y, FrameT yp

« Linear mapping from the visual features to the text token embedding space
« Adapter: insert a multi-layer perceptron and add a residual connection
» Trained on web-scraped WebVid10M dataset with 10M video-text pairs



FrozenBiLM: Zero-Shot QA

Frozen cake weddmg

t’4 t'ﬁ I

th t t'

tls [ty th tn f Add & Norm <)
+

Adapter A4

71 vr

Visual-Text Projection 2 .. Visual-Text Projection P°
uqt urt o

XN

ta tz ty s te [tz (ts [to T [tu Add S;No"" 4

T

The bride and the groom [MASK] the [MASK] at the [MASK]

Caption xX

Frame 1 y4 Frame T yr

Input prompt engineering

Open-ended VideoQA “[CLS] Question: <Question>? Answer: [MASK]. [SEP]’
Multiple-choice VideoQA “[CLS] Question: <Question>? Is it '<Answer Candidate>"? [MASK]. [SEP]"

Video-conditioned fill-in-the-blank task “[CLS] <Sentence with a [MASK] token>. [SEP]’



Experimental results: ablation

« Zero-shot performance; no downstream training data is
used; use of WebVid10M for training the adapter layers

 Ablation of different components of frozen BiLM

LM Frozen Koo Fill-in-the-blank Open-ended Multiple-choice
Pretraining LM e LSMDC iIVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA | How2QA TVQA
X X X 0.5 0.3 0.1 0.0 0.5 0.0 324 20.7
v X X 37.1 210 17.6 319 20.7 30.7 45.7 45.6
v v 50.7 27.3 16.8 Sl 24.7 41.0 53.5 53.4
v v 51.5 26.8 16.7 33.8 25.9 41.9 58.4 29.2

* Pre-training is important
« Linear layer projection works well, adapter layers show
additional gain



Experimental results: SOTA comparison

» Comparison to the SOTA on zero-shot VQA

Nistiod Training Data Fill-in-the-blank Open-ended Multiple-choice
LSMDC  |[iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA|How2QA TVQA
Random — 0.1 0.1 0.1 0.1 0.1 0.1 25 20
CLIP ViT-L/14 [75] 400M image-texts 12 92 2.1 1.2 1.2 3.6 477  26.1
Just Ask [108] %ﬁc"g&d\({%‘fﬁ[ - _ 133 56 13.5 123 — | s3a1 =
Reserve [116] YT-Temporal-1B 31.0 — 5.8 — — — — —
FrozenBiLM (Ours) WebVid10M 1.5 26.8 16.7 33.8 25.9 41.9 584  59.7

GT Answer: camal

JustAsk: horseyard
UnFrozenBiLM: desert
FrozenBiLM (text-only): chair
FrozenBiLM (ours): camel

Question: where is the woman sitting on?



Multimodal transformers — different models / tasks

» Text/ image/video retrieval (CLIP)

.Illlllllll.ll;ll
bt e M e R R T e
It's a nice machine Lisa 1000 of spimach”

Image / video captioning (Vid2Seq)

(1) Contrastive pre-training
iy |} T ‘

= I 1] -

- Tn

— | |57 (5T (LT

L > 5 || LT (BT | LT

D | LT | -
Image | I 5T | LT [T

- | Ty

LTy

ITy

Contrastive training

> Iy kT | KT | IkT: =




Dense video captioning - task

Video captioning models for long videos with multiple events

— Captions are grounded in the video
— Combines localization and text generation

An elderly man is playing the piano

in front of a crowd.

A woman walks to the piano and
briefly talks to the the elderly man.

> The woman starts singing along
with the pianist.
Another man starts dancing to the
—® music, gathering attention from the
crowd.

Eventually the elderly man finishes
playing and hugs the woman, and
the crowd applaud.

time

Example of dense, overlapping captions from the ActivityNet dataset



Dense video captioning — SOTA

Current approaches for dense video captioning

— Train separate networks for localization and captioning
— Require task-specific components like event counters
— Train on manually annotated datasets (small)

— Cannot reason over long videos

Localization as language modeling

— Pix2seq casts object detection

as sequence generation

— Spatial coordinates are
quantized and tokenized




Vid2Seq approach

« Single target sequence consists of Text + Time tokens
combining localization + captioning

« Large-scale pretraining from narrated untrimmed videos

Dense video captioning

<1s><8s>The man is fastening the dog. <20s><50s>The dogs are pulling the sled. <455><49s>The man is saying hello.

[Vid2Seq, A. Yang et al., CVPR 2023]



Visual Encoder f

Vid2Seq — model

. Output dense  U-30s > 8.53s: The man is fastening the dog.
Visual token P 20.08s =¥ 49.70s: The dogs are pulling the sled.

Time token event captions 1 ox. 5 19 205 The man is saying hello.
Text token Visual and speech embeddings [x', 3] Output event sequence 2
X — X —x — X — ) =P — Y =Y = Y — Y=Y =Y = Y =) 1> <17> The man isfastening...<9%> The man is saying hello. [EOS]
Jomm o bt I T P P P e e e g P T (P (O T
[ Language Modeling Head A’
S0
Lty & LRI pe Transformer Text Decoder A
Q '
t t t t e t t t t t ¢t t 1t t ¢t = L L [ WAL BE AL S AR
x oxe-xh, x @ PR B 003 B8 B 0E 0 D2 S =# =z 5 z zzE ..z, z ZlZLE. Zh F
t t & t g 0 RN, T N A, (e R R A P (PN N N
Spatial Encoder f* = Encoder Token Embedder g* ‘5 Decoder Token Embedder &*
=

rerrirrrrtd rerrrrrrrre et

0> Please stay calm! <86 92> Hey my friend! [BOS] 17 The man is 89 98 The man is saying hello.

Transcribed speech sequence ¥ Text +Time Tok
ext +Time Tokens

Text + Time Tokenization

stay calm man is hey
! Time Tokenization SO 3.02x100
3.02s > 4.99s: Please stay calm] S=3.005 ] £ | _ | 3.02X I = ¢
42.87s < 45.97s: Hey my friend! o LT T L T T ~w T 49.70
& HIH LR T
i Input transcribed speech /ideo timeline ati = antized i = ins
Input video frames x p p Video timeline, duration T = 49.70s quantized in N = 100 bins

o Frozen Visual backbone (CLIP)
« Temporal Encoder for video

« Speech is cast as a single sequence of text and time tokens
e 15 Encoder & Decoder



Vid2Seq — large-scale pretraining

. Pretraining dataset is 15 million YouTube narrated videos
fro m YT'Tem po ra I - 1 B Large-scale pretraining from narrated videos

. ASR sentence boundaries used A

as event boundaries ‘M :

«| Hey guys today I am going |4}
to teach you how to ski

[ =5
J

B o Vi

PN

. Generative loss: given visual input predict speech

. Denoising loss: given visual input and masked speech,
predict the masked tokens
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Vid2Seq — SOTA results
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Ablation studies

Pretraining is important, datasize and quality matter
Time tokens help when pretraining on untrimmed videos
Visual and speech information is complementary

Importance of losses: denoising loss is important if we use speech during
pretraining



Qualitative results

I'm going || I'm just I've got a piece The So I'm Now, I'm I'm just Now, I've got my small We're And if you'd
to start going to of wax paper first going to using my going to the cast-iron skillet on going to like to
off with trim off here and | put thing take two homema mix this breading medium-high heat be baking follow me
In put wo the grisly that onto my I'm large cggs de ltalian together process here and I'm going to these and on Google
boneless || parts and cutting board going and crack bread and now isreally | +| putinaboutaquarter | + | that will Plus
Speec]] skinless the "l [...]and I'm e thoseinte |*** | crumbs *** | wecan simple *| ofan inch or so of .| finish e Facebook
chicken excess going to pound need is || abowl here. start on this extra virgin olive oil cooking and/or
breasts fat out my breast ancgg || and if you breading || you just into the bottom of them. Pinterest all
here. maybe halves until wash. getany our want to that and I'm going to my links
some of they are about shells in chicken. take one let that come up 10 will be in
the skin 1/2 an inch there, be of your temperature and then the
that's left thicker. sure to get fiss] I'm going to start description
over on those |...] frying up my chicken box.
there. pieces.

Input
Frames
GT
Vis2Seq Crack two large Fry the
eggs into a bowl chicken in a
and whisk them pan with
together. oil.




Input
Speech

Input
Frames

GT

Vis2Seq

Qualitative results

Next Oh is Christina Oh Beck full most consistent off the top women javelin throwers
around at the moment.

Well, that's
another
very fine.

Christina Oh beg for
what a wonderful record.

She's got over the years know what
major gold medals until now.

She throws her hands up to
_| cheer and wraps herself in a

flag.

| I She throws a second javelin.

J She waves to

the crowd and

holds up a flag.




Dense Video Object Captioning

Detect, track and describe all objects in a video
- Object-centric video description / captioning
—>Video object grounding



Dense video object captioning - task definition

» Detect, track and caption objects

A child holds a toy on the grass A child in blue clothes is towards another child

_ Achild is away from another child ~ An adult wearing jeans is behind a child

» Extension of the state-of-the-art multi-object tracking metric HOTA to include
a captioning accuracy

[Dense Video Object Captioning from Disjoint Supervision, X. Zhou et al., arXiv’'23]



End-to-end video object tracking & captioning

A dog picking up a toy

Auto-regressive
Language
Decoder

Oo0o0o Ooboo OOooo .

r T mmm BOS

Grouping

o000 Ooooo oOooo .
BOS

ez [ za e

Auto-regressive
Language
Decoder

A toy on the ground

[Wu et al, GRIT: A Generative Region-to-text
Transformer for Object Understanding, arXiv 2022]



End-to-end video object tracking & captioning

Detection loss
(COCO, VG)

Tracking loss
(Augmented-COCO)

Object caption loss
(VG)

| DeEodér |

Oo0o0o Ooboo OOooo .

Tx49 +1
tokens

o000 OoboOoo Oooo .

Global caption loss
(SMIT)




Qualitative results

a pen?um on the rnght side
a black a1d yel

oW penguin




Application to video grounding

Query: g = “A child holds a toy on the grass”




Application to video grounding

Query: g = “A child holds a toy on the grass”

likelihood( 8, @) = 0.9 likelihood( B, g) = 0.5

likelihood( ~ ,q)=0.4 likelihood( |, g) = 0.1



Application to video grounding

Query: g = “A child holds a toy on the grass”

likelihood( 8, @) = 0.9 likelihood( B, g) = 0.5

likelihood( ~ ,q)=0.4 likelihood( |, g) = 0.1



Video grounding results

Finetuned Zero-shot

STVGBert [52]  47.3 -
TubeDETR [66]  59.0 -
STCAT [29] 61.7 -

Ours 61.9 54.1

VidSTG spatial-grounding

Average intersection over union with GT (loU)



Multimodal data for generating automatic training data

« Large-scale weakly supervised data

Training on the HowTo100M [1] dataset

- -
o

— HowTo100M dataset with 100M video-ASR pairs
[HowTo100M. A. Miech et al., ICCV’19]

— WebVid10M dataset with 10M video-text pairs
[Frozen In Time, M. Bain et al., ICCV'21]

“Billiards, concentrated young “Female cop talking on walkie-
woman playing in club” talkie, responding emergency call,
crime prevention”



Multimodal data for generating automatic training data

« Cross-modal supervision
— Speech2Action for mining clips
— Levering text model for annotating clips with question/answers

« Data Mining

— Transfer of image captions to video



Speech2Action: Cross-modal supervision

Train Speech to Action Classifier with Movie Screenplays Weak label with Speech2Action Classifier

1

Yes, it is him.
Agent #1 hands him the phone.
PETER
Hello, yes, operator, I accept the
charges.

: Speech2Action
Agent #1 gestures to Agent #3 to take a look around the :

classifier

apartment. Agent #3 slips away.
AGENT #1
Would you mind very much if I
listened?

—>

BERT

Hello, it's me

PETER
Please, go right ahead. i
i Speech2Action
o classifier

Speech is input to the action classifier

Weak label: [answer] phone
Actions labels are obtained from scene descriptions

[Speech2Action, A. Nagrani et al., CVPR’20]



run

don’t moveI he‘!

he was running after

mike, run, run!

Chase him! They ran into the




phone

[ beeps ] hello

rebekah is not answering skinner's not answer/ng his

:‘-‘in
-~
i~
L J'S
=
Y
N
=1
&
N
o

hey, it's me.




y o
'm gonna smash that camera to bits. you gotta hit him in the solar plexus!

hit him right between the eyes.

backhand, snap down, round off reach into
the back handspring, and then tuck.




he made a u turn on an empty street.

drive

camaro headed east on ocean park.

they stopped under the brooklyn queens
expressway.

my wife gets in the car i start driving down
my block to the corner.




shoot

with the sharps carbine, that is within range.

you got 10 seconds to come out, or we start
shooting.

kincaid ordered not to shoot.

you need more arc in that shot.




Result - many examples of rare actions

Long tail of natural distribution of actions

Mines 2 orders of magnitude more training examples for rare/mid classes in
AVA

Log | \
scalel | o

AVA action class

lllllllllllllllllllll

AVA dataset -
Log scale!



Results - directly evaluate on AVA

Data Per-Class AP
drive \ /phone\ kiss dance eat drink run  point  open hit shoot push  hug enter
AVA (fully supervised) 0.63 0.54 0.22 0.46 0.67 0.27 0.66 0.02 0.49 0.62 0.08 0.09 0.29 0.14
KS-baseline 1 0.67 0.20 0.12 0.53 0.67 0.18 0.37 0.00 0.33 0.47 0.05 0.03 0.10 0.02
S2A-mined (eroshon  \0.83 0.79 013 055 068 030 063 004 052 054 018 004 007 004
S2A-mined+AVA (¢ 0.18 056 075 040 074 005 056 064 023 007 017 0.04
AVA (few-shot)-20 0.82 0.83 022 055 069 033 064 004 051 059 020 006 019 0.13
AVA (few-shot)-50 0.82 0.85 026 056 070 037 069 004 052 065 021 006 0.19 0.15
AVA (few-shot)-100 0.84 08 030 o058 071 039 075 005 058 073 025 013 027 0.15
AVA (all) 0.86 089 034 058 078 042 075 003 065 072 026 013 036 0.16

. For 8 out of 14 classes, exceed fully supervised performance without a

single training example

. With fine-tuning, exceed supervised performance for all classes



More abstract actions

COUNT

thirty six thousand four hundred, five

two quarters, three dimes, one twenty four thousand four hundred
hundred

nickel, two pennies

FOLLOW

come right behind me!

after you follow me quick!



Cross-model supervision: JustAsk

« Learning zero-shot video question answering with cross-modal supervision

Question: What type of animal do we see?

Our answer: Fish.

» Generate a large-scale video question answering dataset automatically
(HowToVQAGIM)

[JustAsk, A. Yang et al., ICCV’21]



Cross-modal supervision: JustAsk

« HowTo100M dataset with ASR captions
» Textual question-answer training corpus + transformer model
» Transformer extracts answer + question from ASR caption

SQAG6SM

Generated question:
what is being cut?
Cut the white
felt in circle

Extracted answer:
white felt 1

“HowTo100M narrated videos




Cross-model training

Manually annotated Automatic video question-answer generation
text corpus \
QA P Raw narration S Extracted sentence p(s) e
“to dry before you | put.up some pictures of extractor
ctick R on 3 Kick 1 him with another monkey. . T
¥ a

ot ict Question ‘

put up some pictures Outputs

ENETAON e “MoNkEY” P
of him with another” Sentence 8 T i
extractor q Extracted answera
“monkey as well so p “What animal did | put up

you can make many pictures of him with?”
Generated question g
“as you like thank - (
you for watching” starttime | g {%

)N S
l( end time

Sentence-aligned video ¥

« Manually annotated QA text corpus: SQUADv1

— 100k question-answer pairs for paragraphs from Wikipedia articles

« Transformers Ta and Tq are trained for answer extraction
and answer-aware question extraction on SqQuADv1



Manually annotated
QA text corpus

Buuery

Answer Question
extractor generator
Transformer Transformer
Ta Tq

Cross-model training

Automatic video fjuestion-answer generation

R rsarratioe 5 Extracted sentence p(s) .
iy o orEs oS “I put up some pictures of extractor
T hiz1 S kitk e him with another monkey.” [™—>
7 Ta

o e Question ‘

put up some pictures Outputs

NETAON e “NONKEY” P
of him with another” Sentence 8¢ T s
extractor q Extracted answera

“monkey as well so p “What animal did | put up
pictures of him with?”

Generated question ¢

“as you like thank 5 &
you for watching” p(s start time  fumip- 3
“/end time \

you can make many"”

Sentence-aligned video ¥

« HowTo100M clips + speech transcribed with ASR



Cross-model training

Manually annotated Automatic video question-answer generation
QA text corpus

Raw narration §

Extracted sentence p(s)

“to dry before you “| put up some pictures of
stick him on a kick I” him with another monkey.

» ) Question
put up some pictures Outputs
NErator gmmmm———— “Monkey” P
of him with another” = Mon

Extracted answera

“monkey as well so

“What animal did | put up
you can make many"”

pictures of him with?”

Generated question g

Wam sphetion o

Wik s mit f i o S ki crpeinh
papatystovintien)

*

a Q

Answer Question
extractor generator

Transformer Transformer ‘ d r j
T, T HJ

“as you like thank

you for watching” p(,’\)shrt time  fummpp 8 ‘% “
"V /end time k

Sentence-aligned video ¥

« HowTo100M clips + speech transcribed with ASR

« Sentence / punctuation extraction with recurrent network
— Sentence aligned video



Cross-model training

Manually annotated Automatic video questiofj-answer generation

QA text corpus Raw narration S Extracted sentence p(s)

“I put up some pictures of
him with another monkey.”

¥

Question
EENETrator e “Monkey”

“to dry before you
stick him on a kick I”

“put up some pictures
of him with another”

Outputs

Extracted answera

“monkey as well so
you can make many"”

“What animal did | put up
pictures of him with?”

Generated question g

Answer Question
extractor generator “as you like thank {
Transformer Transformer you for watching” p(s start time  fempe 3 -
T T end time k
a q

Sentence-aligned video ¥

« HowTo100M clips + speech transcribed with ASR

« Sentence / punctuation extraction with recurrent network
— Sentence aligned video

* Answer + Question extraction with Ta and Tq



Example of generated question-answer

ASR: Add some of your favorite sprinkles give it a mix.
Generated question: \What can you add to the mix?

Generated answer: Sprinkles.



VideoQA architecture

Video-Question Transformer

Video: T —
Language
v Modeling
f Loss
/Contrastive\
Question: Where  ( e
are the men? I
Answer: track -
el | g
Answer Transformer
i f(via:) T a(a;)
ma.leog (E,f(vieqi)Tg(ai) ; ef(v’-q‘)"'g(a’))
. Multi-modal transformer he i ¥ S

« Contrastive loss with positive and negative answers
— Can deal with large-scale data, here 16M different answers



Zero-shot VQA

* No use of any annotated examples for training
* Results on state-of-the-art datasets, use of test data only

Pretraining iIVQA iVQA  MSVD-QA | MSVD-QA
Top 1 Top10 Top 1 Top 10

Random 0.09 0.9 0.05 0.5

HowToVQAG69M 12.2 43.3 7.5 22.4



Zero-shot results

Question: What is the largest object at the right of the man?
Our answer: \Wheelbarrow.

[Text only: Statue.]



Impact of training data

Results on state-of-the-art dataset with training data

Pretraining iIVQA iIVQA | MSVD-QA | MSVD-QA
Top 1 Top10 Top 1 Top 10

AL 12.2 43.3 22.4
HowToVQA69M
UL 23.0 41.2

w/o pretraining
Training
with pretraining
HowTOVQAGIM

35.4 46.3



Impact of pretraining data size

Pretraining data size Zero-shot Finetune
1IVQA MSVD-QA |1IVQA MSVD-QA

0% — — 23.0 41.2
1 % 4.5 3.6 24.2 42.8
10% 9.1 6.2 29.2 44.4
20% 9.5 6.8 2.3 44.8
50% 11.3 .3 32.8 45.5
100% 12.2 7D 35.4 46.3

« Amount of pretraining data impacts performance
* Not yet saturated



Video/audio — text dataset

Existing datasets

Video - Text Audio - Text
Manually Labelled ActivityNet-captions, AudioCaps, CLOTHO
Expensive, time-consuming, MSR-VTT, MSVD,
=> small YouCook?2, etc
Semi-automatic/automatic HowTo100M,
Weak, noisy WebVideoText,

=> require millions of samples to Instagram Hashtags,
get good performance

=> text is not really a ‘caption’

Image captioning datasets, however, such as Conceptual Captions
are large (millions), and relatively clean



Transfer image captions to video and audio

« Start with a seed image-captioning dataset, large-scale relatively
clean image caption dataset available, i.e., Conceptual Captions

» Find frames in videos with high similarity scores to the seed image

« Extract short video clips around the matching frames and transfer
the caption

Online Video
Image Frames Threshold = 0.6
Captioning
Dataset
% 0.8 — }—»Match
- R "7
L v l‘ i —()
. f(x) T
: image-image K “ 2 05 @
- similarity —
a O
-
“pop artist performs - ' @M =
at the festival in a 0.7 atc
city”
' O
Similarity
scores

VideoCC Dataset

Transfer caption |

[Learning Audio-Video Modalities from Image Captions, A. Nagrani et al., ECCV’22]



VideoCC3M

Use the Conceptual Caption 3M dataset as seed

Size: 10.3M; possibly multiple captions per video clip and multiple captions
per video

Multimodal: Both video and audio (unlike WebVid-2M)
Diversity: more balanced that HowTo100M

Domains in VideoCC Domains in HowTo1l00M

s Food

I Hobby

Bl Vehicle

Bl Gardening

mmm Technology

BN Animal

s Other

B Culture

. Home improvement
I Beauty tips




VideoCC3M — examples

Caption Seed Image Mined Videos

“Person throws
a pitch during a
game against
university”

“Rap artist
perform
onstage during
day at festival”

“Sea anemone
in a dark blue
water of
aquarium”

“And thisis a
statue”



VideoCC3M — level of noise in the data

% Manual Study of 100 samples: 91/100 are relevant
> 9 not relevant, 31 somewhat relevant, 60 highly relevant

Caption Seed Image Mined Videos

“The robot playing electric
guitar.”

“Cricket player embraces
cricket player on scoring
the winning runs during
the international cricket
match

“The view of a red car
blurred through broken
glass




Zero-shot results - Video retrieval

PT Data Modality #Caps R@1 R@5 R@10
Zero-shot

i \ - _ _ i

HowTol100M [54] \" 130M 86 169 25.8

VideoCC3M \% 970K 189 37.5 47.1

VideoCC3M A+V 970K 20.4 39.5 50.3

Zero-shot results on MSR-VTT text-video retrieval

Method V-T PT #Caps Ra@l R@5 R@10
MIL-NCE [54] HT100M  136M 7.5 21.2 29.6
SupportSet [60] HT100M 136M 8.7 23.0 31.1
EAO [68] HT100M  136M 9.9 240 32.6
VideoCLIP [79] HT100M 136M 10.4 22.2 30.0
FIT [9] WebVid2M* 25M 154 336 44.1

Ours VideoCC3M 970K 20.4 39.5 50.3




Zero-shot results - Video Captioning

. . . . Method PT Modality B4 C M
« First results for zero-shot video captioning ~ ——
< Outperforms HowTo100M by a large ous HowTolooM v 7.2 05 8.23

Ours VideoCC3M Vv 13.23 8.24 11.34

ma rg In Table 4. Results on the MSR-VTT dataset for video captioning.

Zero-shot results are obtained without any annotated video-text
data. Modalities: V: RGB frames. T: ASR in videos.

‘lr.
. a man is discussing the parts in an engine - this is about sports players making big plays during
GT: compartment in a vehicle ElEs Gl g s 5.y the game
So I'm going to do ahead and remove this It's a great place to live and it's a great place to work. | don't know if you can see that but there's a little bit
HowTo100M: goinglog of a gap in the middle of the field.
VideoCC3M: the engine bay of an automobile model

clouds moving in the blue sky american football pIag:or:;:ct);ana touchdown against



