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Camera geometry
and calibration 

• Pinhole perspective projection
• Orthographic and weak-perspective models

• Non-standard models
• A detour through sensing country
• Intrinsic and extrinsic parameters
• Camera calibration



Images are two-dimensional patterns of brightness/color values

They are formed by the projection of 3D objects.





Pinhole perspective model



Pinhole perspective model

Land & Nilsson 

“Animal Eyes” 

Oxford, 2012



Pinhole perspective model



Animal eye: a looonnng time ago.

Pinhole perspective projection: Brunelleschi, XVth Century.
Camera obscura: XVIth Century.

Photographic camera:
Niepce, 1816.



Massaccio’s Trinity, 1425

Pompei painting, 2000 years ago

Van Eyk, XIVth Century

Brunelleschi, 1415



How do we see images?





Pinhole Perspective Equation
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Affine projection models: Weak perspective projection
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is the (negative) magnification.

When the scene relief is small compared its distance from the
Camera, m can be taken constant: weak perspective projection.



Affine projection models: Orthographic projection
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When the camera is at a
(roughly constant) distance
from the scene, take 𝑚 = −1



From Zisserman & Hartley



Planar pinhole 
perspective

Orthographic
projection

Spherical pinhole
perspective



Pinhole Perspective Equation
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Lenses

Snell’s law

  n1 sin α1 = n2 sin α2

(Descartes’ law
 for Frenchies)



Thin Lenses (including paraxial approximation)
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Thick Lenses



Spherical
Aberration

Distortion

Chromatic
Aberration



Geometric Distortion



Rectification



Radial Distortion Model



A compound lens



E=(/4) [ (d/z’)2 cos4 ] L



Vignetting





Challenge: Illumination – What is wrong 
with these pictures?



Photography 
(Niepce, “La Table Servie,” 1822)

Milestones: 
• Daguerréotypes (1839)
• Photographic Film (Eastman,
1889)
• Cinema (Lumière brothers, 1895)
• Color Photography (Lumière brothers, 
again, 1908)
• Television (Baird, Farnsworth,
Zworykin, 1920s)

CCD Devices (1970), etc.



Image Formation: Radiometry

What determines the brightness of an image pixel?

The light
source(s)

The surface
normal

The surface
propertiesThe optics

The sensor
characteristics



Quantitative Measurements and Calibration

Euclidean Geometry



Pinhole Perspective Equation










=

=

z

y
fy

z

x
fx

''

'' 𝑢 = 𝑓
𝑥

𝑧

𝑣 = 𝑓
𝑥

𝑧

𝑝 =
𝑢
𝑣
1

𝑃 =
𝑥
𝑦
𝑧

𝑝 =
1

𝑧
P



Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

homogeneous image 

coordinates

homogeneous scene 

coordinates

Converting from homogeneous coordinates



Homogeneous coordinates

Invariant to scaling

A point in Cartesian coordinates is a ray in homogeneous ones
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Slide Credit: Savarese

Projection matrix

p: Image Coordinates: (u,v,1)

M: 3x4 projection matrix

K: Intrinsic Matrix (3x3)

R: Rotation (3x3) 

t: Translation (3x1)
P: World Coordinates: (x,y,z,1)
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𝑝 ≈ 𝑀𝑃 = 𝐾 𝑅 𝑡 𝑃

f

𝑝 = 𝜆 𝑀𝑃 for some 𝜆 ≠ 0
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Slide Credit: Savarese

Projection matrix

Intrinsic Assumptions

• Unit aspect ratio

• Image center at (0,0)

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

P

p

𝑝 ≈ 𝐾 𝐼 0 𝑃

(Note: here 𝑤 = 𝑧)



Remove assumption: known image center
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Intrinsic Assumptions

• Unit aspect ratio

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

𝑝 ≈ 𝐾 𝐼 0 𝑃



Remove assumption: square pixels
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Intrinsic Assumptions
• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

𝑝 ≈ 𝐾 𝐼 0 𝑃



Remove assumption: rectangular pixels
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Intrinsic Assumptions Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Note: different books use different notation for parameters

𝑝 ≈ 𝐾 𝐼 0 𝑃



Oriented and Translated Camera
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Allow camera translation
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Intrinsic Assumptions Extrinsic Assumptions
• No rotation

𝑝 ≈ 𝐾 𝐼 𝑡 𝑃



3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:
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Slide Credit: Saverese



Allow camera rotation
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𝑝 ≈ 𝐾 𝑅 𝑡 𝑃



Degrees of freedom
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𝑝 ≈ 𝐾 𝑅 𝑡 𝑃



𝑝 ≈ 𝑀𝑃 or 𝑝 =
1

𝑧
𝑀𝑃 𝑀 = 𝐾 𝑅 𝑡

𝑝 = 𝐾 Ƹ𝑝 and Ƹ𝑝 =
1

𝑧
෡𝑀𝑃 ෡𝑀 = 𝑅 𝑡

normalized coordinates



Explicit form of the projection matrix



Explicit Form of the Projection Matrix

Note:

M is only defined up to scale in this setting!!



Theorem (Faugeras, 1993)



Linear Camera Calibration

Remember: 𝑎 ⋅ 𝑏 = 𝑎𝑇𝑏

T T

T T



Homogeneous Linear Systems

A

A

x

x 0

0=

=

Square system:

• unique solution: 0

• unless Det(A)=0

Rectangular system ??

•  0 is always a solution

Minimize ||Ax|| 
under the constraint 
||x||  =12

2



How do you solve overconstrained  homogeneous 
linear equations ?? Homogeneous linear least squares

The solution is e   .
1

E(x)-E(e1) = xT(UTU)x-e1
T(UTU)e1

       = 11
2+ … +qq

2-1

                  > 1(1
2+ … +q

2-1)=0



Linear Camera Calibration

Minimize ||Pm||  under the constraint  ||m||  =1
22



Once M is known, you still got to recover the intrinsic and
extrinsic parameters  !!!

This is a decomposition problem, not an estimation
problem.

•  Intrinsic parameters

•  Extrinsic parameters





Weak-Perspective Projection Model

r
(p and P are in homogeneous coordinates)

p = A P + b (neither p nor P is in hom. coordinates)

p = M P (P is in homogeneous coordinates)



Applications: Mobile Robot Localization (Devy et al., 1997) 



(Rothganger, Sudsang, Ponce, 2002) 



How do we perceive depth?



PMVS (Furukawa & Ponce, 2007)



Feature-based alignment outline



Feature-based alignment outline

Extract features



Feature-based alignment outline

Extract features

Compute putative matches



Feature-based alignment outline

Extract features

Compute putative matches

Loop:

• Hypothesize transformation T (small group of putative 

matches that are related by T)



Feature-based alignment outline

Extract features

Compute putative matches

Loop:

• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 

with T)



Feature-based alignment outline

Extract features

Compute putative matches

Loop:

• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 

with T)



3D object modeling from multiple images 
(Rothganger et al., 2003)



Recognition examples with major clutter and
partial occlusion (Rothganger et al., 2003)



Image processing

• Filters and convolution

• Derivatives and edge detection
• The Canny edge detector
• Denoising, sparsity and dictionary learning
• Super-resolution



An image can be interpreted either as:
– a continuous function 𝑓(𝑥, 𝑦)

– a discrete array 𝐹𝑢,𝑣



Basic Filters



Convolution
Linear filters = Weighted averages

• Represent the weights by a rectangular array F.

• Applying the filter to an image G is equivalent 
to performing a convolution:

 Rij = (F*G)ij =  u,v Fi-u, j-v  Gu, v

• In the continuous case:

 (f * g) (x,y) =  su,v f(x-u,y-v) g(u,v) du dv

• Note:    f*g=g*f.
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Basic Properties

• Commutativity: f * g = g * f

• Associativity: (f * g) * h = f * (g * h)

• Linearity: (af + bg) * h = a f * h + b g * h

• Shift invariance: ft * h = (f * h)t

• Only operator both linear and shift 
invariant

• Differentiation: ( ) g
x

f
gf

x
**




=


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Practicalities (discrete convolution)
• Python: convolve function
• Border issues:

– When applying convolution with a KxK 
kernel, the result is undefined for 
pixels closer than K pixels from the 
border of the image

• Options:

K

Wrap around
Expand/Pad

Crop
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We ignore the normalization 

constant such that
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Gaussian filters



,  = 5
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Averaging

Gaussian 
Smoothing



Image 
Noise

IID Gaussian white noise

𝜂 𝑥, 𝑦 ~𝑁(0, 𝜎)



Gaussian Smoothing to Remove Noise

 = 2  = 4No smoothing

Bottom line: The standard deviation of white noise is divided by k*sigma



 = 1

 = 3

 = 5

Shape of Gaussian filter as function of 𝜎



Basic Properties

• Gaussian removes “high-frequency” components from the image 
→ “low pass” filter

• Larger  remove more details
• Combination of 2 Gaussian filters is a Gaussian filter:

• Separable filter:

• Critical implication: Filtering with a NxN Gaussian kernel can be 
implemented as two convolutions of size N → reduction 
quadratic to linear → must be implemented that way 
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• Gaussian function has infinite support

• In actual filtering, we have a finite kernel size

Note about Finite Kernel Support
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Image Derivatives
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Difference between

Actual image values

True difference

(derivative)

Sum of the noises

• We want to compute, at each pixel (x,y) the derivatives:

• In the discrete case we could take the difference 
between the left and right pixels:

• Convolution of the image by 

• Problem: Increases noise

1 0 -1 = x



Finite differences



Finite differences responding to noise

Increasing zero-mean Gaussian noise



Smooth Derivatives
• Solution: First smooth the image by a Gaussian G and then take 

derivatives:

• Applying the differentiation property of the convolution:

• Therefore, taking the derivative in x of the image can be done by 
convolution with the derivative of a Gaussian:

• Crucial property: The Gaussian derivative is also separable:
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Applying the first derivative of Gaussian
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There is ALWAYS a tradeoff between smoothing and 
good edge localization!

Image with Edge Edge Location

Image + Noise Derivatives detect 

edge and noise

Smoothed derivative removes 

noise, but blurs edge
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Second derivatives: 
Laplacian



DOG Approximation to LOG



Edge Detection

Edge Detection
–  Gradient operators

–  Canny edge detectors

–  Laplacian detectors



What is an edge?

Edge = discontinuity of intensity 
in some direction.
Could be detected by looking for 
places where the derivatives of 
the image have large values.



There are three major issues:
   1) The gradient magnitudes at different scales are different; 
        which one should we choose?
   2) The gradient magnitude is large along thick trails; how
        do we identify the significant points?
   3) How do we link the relevant points up into curves?

Gradient-based edge detection



The Laplacian of Gaussian 
(Marr-Hildreth 80)

• Another way to detect an 
extremal first derivative 
is to look for a zero 
second derivative.

• Appropriate 2D analogy is 
rotation invariant:

– the Laplacian

 r2 f=2f/x2+2f/y2

• Bad idea to apply a Laplacian 
without smoothing:

– Smooth with Gaussian, 
apply Laplacian.

– This is the same as 
filtering with a Laplacian 
of Gaussian filter.

• Now mark the zero points 
where there is a sufficiently 
large derivative, and enough 
contrast.



The Laplacian of a Gaussian



sigma=2

sigma=4

contrast=1 contrast=4LOG zero crossings



Gradient magnitude along an idealized curved edge.

Curved edges are locally straight: The gradient is 
orthogonal to the edge direction.





Edge pixels are at local maxima of gradient magnitude
Gradient computed by convolution with Gaussian derivatives
Gradient direction is always perpendicular to edge direction



= 10 = 1

Large  → Good detection (high SNR)
                  Poor localization

Small  → Poor detection (low SNR)
                 Good localization



Canny’s Result
• Given a filter f, define the two objective functions:

(f) large if f produces good localization

(f) large if f produces good detection (high SNR)

• Problem: Find a family of filters f that maximizes the compromise criterion 

 (f)(f) 

    under the constraint that a single peak is generated by a step edge

• Solution: Unique solution, a close approximation is the Gaussian 

derivative filter!

Canny Derivative of Gaussian



Non-Local Maxima Suppression

1.5

2

2

4.1

Gradient magnitude at center pixel 
is lower than the gradient magnitude 
of a neighbor in the direction of the 
gradient  → Discard center pixel 
(set magnitude to 0)

Gradient magnitude at center pixel 
is greater than gradient magnitude 
of all the neighbors in the direction 
of the gradient 
→ Keep center pixel unchanged

2.5

1.0



Non-maximum
suppression

At q we have a 
maximum if the 
value is larger than 
those at both p 
and at r. 
Interpolate to get 
these values.



Input image



T = 15 T = 5

Two thresholds applied to gradient magnitude



Weak pixels but connected

Very strong edge response. 
Let’s start here

Weaker response but it is 
connected to a confirmed 
edge point. Let’s keep it.

Continue…

Weak pixels but isolated

Hysteresis Thresholding



T=15 T=5

Hysteresis

Th=15 Tl = 5

Hysteresis 
thresholding



We have unfortunate behaviour
at corners



Reasonable physical models of image corruption

 - For example: y=A(x)+ε

 - For example: A(x) = k   x

➢ One can use prior knowldege

 - For example: sparsity, self similarities

➢ Realistic simulated training examples

➢ Interpretable, “functional” architectures

*

Why machine learning for image restoration?



Reasonable physical models of image corruption

 - For example: y=A(x)+ε

 - For example: A(x) = k   x

➢ One can use prior knowldege

 - For example: sparsity, self similarities

➢ Realistic simulated training examples

➢ Interpretable, “functional” architectures

*
But where does the real
ground truth come from,
whether for model-based
or data-driven methods?

Why machine learning for image restoration?



Let us start simple: How to denoise an image
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Let us start simple: How to denoise an image

Non-local means filtering (Buades et al.’05) BM3D = Sparse representation on (3D) DCT 
dictionary + NLM (Dabov et al.’07)

Observation: natural image patches can be sparsely represented as linear combinations of a few elements
of appropriate dictionaries, e.g., discrete cosine transform basis functions  (e.g., Olshausen and Field, 1997;
Chen et al., 1999; Mallat, 1999).
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Let us start simple: How to denoise an image

Non-local means filtering (Buades et al.’05)

min
𝐷,𝛼1,…,𝛼𝑛

෍ 𝑥𝑖 − 𝐷𝛼𝑖 𝐹

2
+ 𝜆 𝛼𝑖 1

LSC: Dictionary learning with sparsity
(Elad & Aharon’06; Mairal et al.’08)

𝛼1         𝛼2          ….         𝛼𝑛













Let us start simple: How to denoise an image

Non-local means filtering (Buades et al.’05)

min
𝐷,𝐴

 σ𝑖 𝑋𝑖 − 𝐷𝐴𝑖 𝐹

2
+ 𝜆 𝐴𝑖 1,2

  where  𝐴
1,2

= σ𝑟 𝛼𝑟
2

LSSC: Dictionary learning with structured 
sparsity (Mairal et al.’09)



LSSC



Real noise is complicated

• Noise = shot noise (physics) plus read noise (electronics)

• Random variable following a Gaussian distribution with zero mean and signal-dependent
    standard deviation function (Foi et al., 2008)

𝑠 𝑢 = 𝛼𝑦 𝑢 + 𝛽

    whose parameters 𝛼 and 𝛽 can be determined for a given camera

• This is only true for raw images. More on that later

A. Foi, M. Trimeche, V. Katkovnik,  K. Egiazarian, “Practical Poissonian-Gaussian noise 
modeling and fitting for single-image raw-data”, IEEE TIP 17(10):1737–1754 (2008).



Real noise (Canon Powershot G9, 1600 ISO)

Raw Jpeg Adobe Camera Raw Noiseware

DXO LSC LSSC



Non-local means filtering (Buades et al.’05)

Let us start simple: How to denoise an image

where

Self-attention (Vaswani et al., 2017)

Note: 𝑇𝑘 is a stochastic matrix, thus the rows of  
𝑇𝑘𝑋 are barycentric combinations of all the rows of 
𝑋, weighted in a complex way by their affinities
𝑋𝑖−1𝐴𝑖𝐵𝑖

𝑇𝑋𝑖−1
𝑇 . (See also Andrej Karpathy’s talk.)
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Let us start simple: How to denoise an image

Note: 𝑇𝑘 is a stochastic matrix, thus the rows of  
𝑇𝑘𝑋 are barycentric combinations of all the rows of 
𝑋, weighted in a complex way by their affinities
𝑋𝑖−1𝐴𝑖𝐵𝑖

𝑇𝑋𝑖−1
𝑇 . (See also Andrej Karpathy’s talk.)



Image interpolation 
  aka 
Depixellisation
  aka 
Example-based super-resolution
 aka 
Single-image super-resolution

(Dahl et al., 2017)

× 4

× 4

× 4



Image interpolation 
  aka 
Depixellisation
  aka 
Example-based super-resolution
 aka 
Single-image super-resolution

(Dahl et al., 2017)

Problem: Not enough information 
in a single image: details must be 
hallucinated

× 4

× 4

× 4

× 4

× 4

× 4

GT

GT

GT



(FSRNET Chen et al.,  2017)
(FSRGAN Zhu et al., 2020)
(PULSE Menon et al., 2020)



Generative vision

https://magnific.ai/



Super-Resolution from a Single Image
(Glasner, Bagon, Irani, ICCV’09) 



Key idea: exploit internal self-similarities

Super-Resolution from a Single Image
(Glasner, Bagon, Irani, ICCV’09) 
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Super-Resolution from a Single Image
(Glasner, Bagon, Irani, ICCV’09) 

Lo-res

image

Hi-res

image

Sampling

blur



True (= multi-frame) super-resolution: no need to hallucinate details

(Irani & Peleg, 1991; see also Tsai & Huang, 1984)

Input burst
Initial estimate Refined estimate



Super-resolution with “hallucination/recogstruction”

(Baker and Kanade, 2002)

× 4, alignment
known exactly

• LR input image (1 of 4)
• Recogstruction
• Ground-truth HR image

• (Hardie et al., 1997)
• Bicubic interpolation

Key idea: learn a prior on the spatial 
distribution of the image gradient for 
frontal images of faces



1 LR RGB image 1 HR RGB image

20 LR raw images = burst

1 HR RGB image

Single-image
interpolation

Super-resolution



Handheld Multi-Frame Super-Resolution
(Wronski, Garcia-Dorado, Ernst, Kelly, Kainin, Liang, Levoy, Milanfar, SIGGRAPH’19)

Key idea: exploit natural hand tremor and avoid single-image demosaicing altogether

(Lecouat et al., ICCV’21)



Super-resolution as an inverse problem

• Forward model:  𝑦𝑘 = 𝑈𝑝𝑘
 𝑥 + 𝜀𝑘 for 𝑘 = 1, … , 𝐾 with 𝑈𝑝𝑘

= 𝐷𝐵𝑊𝑝𝑘

• Solve min𝑥,𝑝
1

2
|| 𝑦 − 𝑈𝑝 𝑥||2 + 𝜆𝜑 𝑥 where  𝑦 =

𝑦1

⋮
𝑦𝐾

and  𝑈p =

𝑈𝑝1

⋮
𝑈𝑝𝐾



• 𝑦𝑘 = 𝑈𝑝𝑘
 𝑥 + 𝜀𝑘 for 𝑘 = 1, … , 𝐾 with 𝑈𝑝𝑘

= 𝐷𝐵𝑊𝑝𝑘

• Define 𝑥𝜃 𝑦 = argmin𝑥,𝑝
1

2
|| 𝑦 − 𝑈𝑝 𝑥 || + 𝜆𝜑𝜃(𝑥)

• Minimize wrt 𝜃 the objective   
1

𝑛
σ1≤𝑖≤𝑛  || 𝑥𝑖  − 𝑥𝜃(𝑦𝑖) ||

2

1

(Warp is piecewise affine)

Lucas-Kanade Reloaded: End-to-End Super-Resolution from Raw Image Bursts
(Lecouat, Ponce, Mairal, ICCV’21) 

Note: 

• Almost impossible to get real 

training data

• “Semi-synthetic” training data 

constructed using ”ISP 

inversion” (Brooks at al., 

2019) with a realistic noise 

model



min
𝐱,𝐩

min
𝐱,𝐩,𝐳

Optimization: unrolled iterative algorithm

Increment 𝜇

➢  

➢  

➢  

➢  

Quadratic penalty (aka HQS) method 

(three iterations)

Proximal update

One step of gradient descent (or a few)

Gauss-Newton (aka Lucas-Kanade)

K. Gregor, Y. LeCun, “Learning fast approximations of sparse coding”, ICML’10



min
𝐱,𝐩

min
𝐱,𝐩,𝐳

Increment 𝜇

➢  

➢  

➢  

➢  

Quadratic penalty (aka HQS) method 

(three iterations)

Proximal update

One step of gradient descent (or a few)

Gauss-Newton (aka Lucas-Kanade)(3 times)

Optimization: unrolled iterative algorithm

K. Gregor, Y. LeCun, “Learning fast approximations of sparse coding”, ICML’10



min
𝐱,𝐩

min
𝐱,𝐩,𝐳

Increment 𝜇

➢  

➢  

➢  

➢  

One step of gradient descent (or a few)

Plug-and-play approach

(small residual U-net)

𝐱𝑡 ← 𝑓𝜃(𝐳𝑡)

Quadratic penalty (aka HQS) method 

(three iterations)

Gauss-Newton (aka Lucas-Kanade)(3 times)

Optimization: unrolled iterative algorithm

K. Gregor, Y. LeCun, “Learning fast approximations of sparse coding”, ICML’10



Raw image burst (Lumix GX9) High-quality picture

Example



Lumix GX9

(Small crop of) Burst of raw pictures (Lecouat et al., ICCV’21)



151



152







Joint HDR / super-resolution  



Application: Thermal imaging - denoising + x4 super-resolution, 20 frames
80x62 waveshare IR camera, less than 150Euro
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