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Camera geometry
and calibration

* Pinhole perspective projection

* Orthographic and weak-perspective models
* Non-standard models

» A detour through sensing country

* Intrinsic and extrinsic parameters

» Camera calibration



They are formed by the projection of 3D objects.
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Images are two-dimensional patterns of brightness/color values
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The Compound Eye

corneal lens— ul of a Mosquito

el ’ * .
crystalline cone one ommatidium

rhabdom— Land & Nilsson

“Animal Eyes”
Oxford, 2012

a compound eye
with one quarter removed '
to show ommatidia facets

retinula cell—"
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Animal eye: a looonnng time ago. Photographic camera:
Niepce, 1816.
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Pinhole perspective projection: Brunelleschi, XV Century.
Camera obscura: XVIt™h Century.
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How do we see images?







Pinhole Perspective Equation

NOTE: z is always negative..




Affine projection models: Weak perspective projection

X'= mx f' - : fr e
{ | WWESCENIESIES IS the (negative) magnification.
y= my Ly

When the scene relief is small compared its distance from the
Camera, m can be taken constant: weak perspective projection.



Affine projection models: Orthographic projection

When the camera is at a
(roughly constant) distance
from the scene, take m = —1




perspective weak perspective

increasing focal length

increasing distance from camera




Planar pmhole Orthographic Spherical pinhole
perspective projection perspective



Pinhole Perspective Equation

NOTE: z is always negative..




Lenses

Snell's law
n; Sinoy = h, sin o,

(Descartes' law
for Frenchies)




Thin Lenses (including paraxial approximation)




Thick Lenses




Spherical
Aberration

Distortion

Chromatic
Aberration

Increasing wavelength

Gamma ray




Geometric Distortion

pincushion barrel




Rectification



Radial Distortion Model

P
[deal: Distorted:
X |
X'=f— X”:EX
A=tk +hyrt -

?



A compound lens




E=(I1/4) [ (d/z’)? cos*a. ] L

T T



Vignetting







Challenge: Illumination - What is wrong
with these pictures?




Photography
(Niepce, "La Table Servie," 1822)

Milestones:

* Daguerréotypes (1839)

* Photographic Film (Eastman,
1889)

* Cinema (Lumiere brothers, 1895) Armay of
* Color Photography (Lumiére brothers, Collection
again, 1908)

* Television (Baird, Farnsworth,
Zworykin, 1920s)

Row Transfer

CCD Devices (1970), etc.

Pixel Transfer




Image Formation: Radiometry

The light
source(s)

The sensor
characteristics

The optics

What determines the brightness of an image pixel?



Quantitative Measurements and Calibration

Euclidean Geometry



Pinhole Perspective Equation
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Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

— — [ a:‘ ]

N Y

(z,y) = | ¥ (z,y,2) = ’
1 1
homogeneous image homogeneous scene

coordinates coordinates

Converting from homogeneous coordinates

y | = (¢/w,y/w) | = @/wy/w, zfw)



Homogeneous coordinates

Invariant to scaling

X KX el T x
. kw | | w
KLY [=|KY =y ||y
wl| |kw| b4 o Lwo
Homogeneous Cartesian
Coordinates Coordinates

A point in Cartesian coordinates is a ray in homogeneous ones



Slide Credit: Savarese

Projection matrix

p: Image Coordinates: (u,v,1)
M: 3x4 projection matrix

~ . K: Intrinsic Matrix (3x3)
p= MP = K [R t]P R: Rotation (3x3)
t: Translation (3x1)
‘ P: World Coordinates: (x,y,z,1)

p =AMP for some 1 # 0



Projection matrix

p~ :
Intrinsic Assumptions  Extrinsic Assumptions
* Unit aspect ratio * No rotation
» Image center at (0,0) * Camera at (0,0,0)
* No skew K
_ o 7 _/_ __X_
uf | f 0 00 y
p~K[I0]P mpwv|=0 f 010 :
1| [0 0 1;0
(Note: here w = z) ol Lot 1

Slide Credit: Savarese



Remove assumption: known image center

Intrinsic Assumptions  Extrinsic Assumptions

* Unit aspect ratio * No rotation
« No skew « Camera at (0,0,0)

sz[[O]P m) w v =0 f v O

N < X




Remove assumption: square pixels

Intrinsic Assumptions  Extrinsic Assumptions

* No skew * No rotation
« Camera at (0,0,0)

p~K[I0]P =) WV

a 0 Uy, O
0 B v, 0
0 0 110

k, N < X




Remove assumption: rectangular pixels

Intrinsic Assumptions  Extrinsic Assumptions
* No rotation

« Camera at (0,0,0)
U] fa s U
p~KI[]O0]P =) wyv :io Vi VOE
1] 0_0_ 1,

Note: different books use different notation for parameters

N < X




Oriented and Translated Camera




Allow camera translation

Intrinsic Assumptions

p~K[lt]P =) wv

Extrinsic Assumptions
* No rotation

O 5 O

PSS &

o O -

o — O

— O O

, N < X




Slide Credit: Saverese

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise;

1 0 0
! R(x)=[0 cosa -sina
0 sina  cosa |

' cosf 0 sing
R(B=| 0 1 0
14 —sing 0 cospg |

cosy —siny 0O
R,(¥)=|siny cosy O
0 0 1




Allow camera rotation

<
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N < X




Degrees of freedom







Explicit form of the projection matrix

Pinhole

/~ Normalized
image plane

" Physical
retina

ar{ —acotfry +uyrs at, — acotbt, + ugt,
B 3
T
?"' 9 —+ (Y
sin ¢ sin @

— bty + vt




Explicit Form of the Projection Matrix

ar{ —acotfry +uyr; at, — acotbt, + ugt,

: : ij,
T‘? T U L'}T%: ty + vt

.‘5,

sinf sin ¢

ri t,

N[ M [f M = (A b) then |as| = 1.

Replacing M by AM in

does not change v and wv.

M is only defined up to scale in this settingll



Theorem (Faugeras, 1993)

Let M= (A b)bead x4 matrix and let al (i = 1,2, 3) denote
the rows of the matrix A formed by the three leftmost columns of

M.

e A necessary and sufficient condition for M to be a perspective
projection matrix is that Det(.4) # 0.
e A necessary and sufficient condition for M to be a zero-skew
perspective projection matrix is that Det(A) # 0 and
(a1 X a3) - (ay X a3) = 0.
e A necessary and sufficient condition for M to be a perspective
projection matrix with zero skew and unit aspect-ratio is that

Det(A) # 0 and

\

\

[ (a1 x a3) - (
| (@1 x a3) - (@1 X as)

\




Linear Camera Calibration

...y Py, with Enown positions and their images

Given n points P




Homogeneous Linear Systems

Square system:

* unique solution: O

* unless Det(A)=0

Rectangular system ??
» 0 is always a solution
- Minimize ||Ax| [

under the constraint
|1x]]% =1



How do you solve overconstrained homogeneous
linear equations ?? Homogeneous linear least squares

E=Uxl”=z" U U=z

e Orthonormal basis of eigenvectors: ey, ..., e,.

e Associated eigenvalues: 0 < A\ < ... < A,

eAny vector can be written as

T =e+...+ [g€,

for some y; (i = 1,...,q) such that p? +... + ,ufr = 1.

E(X)'E(el) — XT(UTU)X-elT(UTU)El
= Dypty?+ .. F gt~y The solution is e,

> A+ ... +ugP-1)=0



Linear Camera Calibration

Given n points Py,..., P, with known positions and their images

Pl o —u P!
of Pl —uP!

2
- Minimize ||Pm|| under the constraint ||m] |2 =1



Once M is known, you still got to recover the intrinsic and
extrinsic parameters |l

This is a decomposition problem, an estimation
problem.

ar{ —acotfry +uyr; at, — acotbt, + ugt,

: : ij,
T‘? T U L'}T%: ty + vt

.‘5,

sinf sin ¢

ri t,

» Intrinsic parameters

+ Extrinsic parameters



Weak-Perspective Projection Model

p=-MP (p and P are in homogeneous coordinates)

b= M P (P is in homogeneous coordinates)

p = A P + b (neither pnor Pis in hom. coordinates)



Applications: Mobile Robot Localization (Devy et al., 1997)




(Rothganger, Sudsang, Ponce, 2002)



How do we perceive depth?







Feature-based alignment outline




Feature-based alignment outline

Extract features



Feature-based alignment outline
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Extract features
Compute putative matches



Feature-based alignment outline

Extract features
Compute putative matches
Loop:

* Hypothesize transformation T (small group of putative
matches that are related by T)



Feature-based alignment outline

Extract features
Compute putative matches

Loop:
« Hypothesize transformation T (small group of putative
matches that are related by T)
« Verify transformation (search for other matches consistent
with T)



Feature-based alignment outline

Extract features
Compute putative matches

Loop:
« Hypothesize transformation T (small group of putative
matches that are related by T)
« Verify transformation (search for other matches consistent

with T)






Recognition examples with major clutter and
partial occlusion (Rothganger et al., 2003)



Image processing

Filters and convolution

Derivatives and edge detection

The Canny edge detector

Denoising, sparsity and dictionary learning
Super-resolution



An image can be interpreted either as:

- a continuous function f(x,y)
- a discrete array F, ,,



Basic Filters




Convolution
Linear filters = Weighted averages

 Represent the weights by a rectangular array F.

» Applying the filter to an image G is equivalent
to performing a convolution:

Rij = (F*G)ij = Zu,v |:i-u,j-v Gu,v
* In the continuous case:
(f*g) (xy) = Sy f(x-u,y-v) g(u,v) du dv

* Note: f*g=g*f.
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Slight Blurring
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More Blurring
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Basic Properties

- Commutativity: f *g=g* f

+ Associativity: (f *g)*h=f>* (g * h)

* Linearity: (af +bg) *h=af*h+bg*h
- Shift invariance: f, * h = (f * h),

* Only operator both linear and shift
invariant

- Differentiation:




Practicalities (discrete convolution)

» Python: convolve function

Border issues:

- When applying convolution with a KxK
kernel, the result is undefined for
pixels closer than K pixels from the
border of the image

- Options:

/7]

Expand/Pad

W d
rap aroun Crop

) —




Gaussian filters

Slight abuse of notation: L
We ignore the normalization [
constant such that




Gaussian Blurring, c =5
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Simple
Averaging

Gaussian
Smoothing




Ideal Image  Noise process IID Gaussian white noise
P P e,

flz,y) = flz,y) + nl=z,v) n(x,y)~N(0, )



Gaussian Smoothing to Remove Noise

W'm \"w\}ﬂl I'W | "! l”
4 .i wi

|

i
| 1
| lehmlw ) *

!

No smoothing o=2 o=4

Bottom line: The standard deviation of white noise is divided by k*sigma



Shape of Gaussian filter as function of o




Basic Properties

Gaussian removes "“high-frequency” components from the image
- "low pass” filter

Larger o remove more details
Combination of 2 Gaussian filters is a Gaussian filter:

Separable filter:
x — *x *x
G,*f=9,,%9 ,*f

Critical implication: Filtering with a NxN Gaussian kernel can be
implemented as two convolutions of size N - reduction
quadratic to linear > must be implemented that way




Note about Finite Kernel Support

» Gaussian function has infinite support

c =5 with 10x10 kernel c = 5 with 30x30 kernel



I'mage Derivatives

We want to compute, at each pixel (x,y) the derivatives:

In the discrete case we could take the difference
between the left and right pixels:

ol : - : i
— = Hi+1 =11 )

Convolution of the image by

O.= |1/|0 |1

X

 Problem: Increases noise

1G+L )= 1G-1 j)=1(@+1 j)-1(-1 j)+n, +n_

/ / )

Sum of the noises
Difference between True difference
Actual image values (derivative)




Finite differences




Finite dif ferences responding to noise

Increasing zero-mean Gaussian noise ‘



Smooth Derivatives

Solution: First smooth the image by a Gaussian G and then take

derivatives: of 8(66 « f)
OX OX
Applying the differentiation property of the convolution:
of 06
~ % f
OX  OX

Therefore, taking the derivative in x of the image can be done by
convolution with the derivative of a Gaussian:

_x2+y2
0G_ _yp 20
OX

Crucial property: The Gaussian derivative is also separable:

G, *xf=9.*g .*f

G’ =
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Applying the first derivative of Gaussian




There is ALWAYS a tradeoff between smoothing and
good edge localization!

Image with Edge Edge Location

Derivatives detect Smoothed derivative removes
edge and noise noise, but blurs edge

Image + Noise



Second derivatives:
Laplacian




DOG Approximation to LOG

V2Go ~ Ggy — Go,




Edge Detection

Edge Detection
- Gradient operators
- Canny edge detectors
- Laplacian detectors

‘ T - - — —
\ )/ % i
/(, // 7 A\\ [
B \/\ G\ s [ .
[\/' ] } /\ S (/ S
Az b
[ S g




Edge = discontinuity of intensity
in some direction.

Could be detected by looking for
places where the derivatives of
the image have large values.



There are three major issues:
1) The gradient magnitudes at different scales are different;
which one should we choose?
2) The gradient magnitude is large along thick trails; how
do we identify the significant points?
3) How do we link the relevant points up into curves?




The Laplacian of Gaussian
(Marr-Hildreth 80)

- Bad idea to apply a Laplacian
without smoothing:

* Another way to detectan  _ gpmooth with Gaussian
extremal first derivative apply Laplacian. |

IS to look for a zero

second derivative. - This is the same as

filtering with a Laplacian

of Gaussian filter.
- Appropriate 2D analogy is

rotation invariant: :
, * Now mark the zero points
- the Laplacian where there is a sufficiently
re £=0°f/0x*+0°f/ oy? large derivative, and enough
contrast.



The Laplacian of a Gaussian



sigma=4

contrast=1 LOG zero crossings  contrast=4

400 450 00




Gradient magnitude along an idealized curved edge.

Curved edges are locally straight: The gradient is
orthogonal to the edge direction.



v

Edge pixels are at local maxima of gradient magnitude
Gradient computed by convolution with Gaussian derivatives
Gradient direction is always perpendicular to edge direction

ol _ x ol __ ~Y

VIl =\/(2)7+ (3)? 0= atan2(3L, L)




70"0 20 30 40 50 60 70 80 90 100 0 30 40 50 60 70 80 90 100

Large o > Good detection (high SNR) Small c = Poor detection (low SNR)
Poor localization Good localization



Canny's Result

» Given a filter f, define the two objective functions:
A(f) large if f produces good localization
>(f) large if f produces good detection (high SNR)
* Problem: Find a family of filters f that maximizes the compromise criterion
AHZ(F)
under the constraint that a single peak is generated by a step edge

« Solution: Unigque solution, a close approximation is the Gaussian
derivative filter!

Canny Derivative of Gaussian



Non-Local Maxima Suppression

. Gradient magnitude at center pixel

is lower than the gradient magnitude
of a neighbor in the direction of the
gradient - Discard center pixel

... (se’r maghitude to 0)

. Gradient magnitude at center pixel
is greater than gradient magnitude
of all the neighbors in the direction

of the gradient

. - Keep center pixel unchanged
“HE




Non-maximum
suppression

At q we have a
maximum if the
value is larger than
those at both p
and at r.
Interpolate to get
these values.




Input image




T=15 T=5

Two thresholds applied to gradient magnitude



Hysteresis Thresholding

Weak pixels but connected

Weak pixels but isolated

Very strong edge response. Weaker response but it is
Let's start here connected to a confirmed
edge point. Let's keep it.

Continue...



Hysteresis
Th:15 T| =5

Hysteresis
thresholding




We have unfortunate behaviour
at corners




Why machine learning for image restoration?

physical models of image corruption
- For example: y=A(x)+¢
- For example: A(x) = k *x
» One can use prior knowldege
- For example: sparsity, self similarities
simulated training examples

» Interpretable, "functional” architectures



Why machine learning for image restoration?

physical models of image corruption

- For example: y=A(x)+¢
But where does the real

- For example: A(x) = k %X ground truth come from,
whether for model-based
» One can use prior knowldege or data-driven methods?

- For example: sparsity, self similarities
simulated training examples

» Interpretable, "functional” architectures



Let us start simple: How to denoise an image




Let us start simple: How to denoise an image

N/

N

means filtering (Buades et al.'05)



Let us start simple: How to denoise an image

N/

N

means filtering (Buades et al.'0b) BM3D = representation on (3D) DCT
dictionary + NLM (Dabov et al.'07)

Observation: natural image patches can be sparsely represented as linear combinations of a few elements
of appropriate dictionaries, e.g., discrete cosine transform basis functions (e.g., Olshausen and Field, 1997;
Chen et al., 1999; Mallat, 1999).



Let us start simple: How to denoise an image

N/

- :
ol e [
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et \ B 0 60
e R
T 5 R A
=
EEEEEE
means filtering (Buades et al.'0b) BM3D = representation on (3D) DCT

dictionary + NLM (Dabov et al.'07)

Take x ~3;a/d/ = Da but limit the number of nonzero coefficients |lal| <k



Linear signal models
Dictionary:
Signal: xe Rm D=[d;,...,dp]eRM X P
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Note: > In general p>m. Here p=256, m=100.
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Sparse linear models

Dictionary:
Signal: xe R™ D=[d;,....dp]eRM XP

FR o memwm oW S
[ PUTTL L e ST | [ IS e

114ANANIN = 2=
-— .,- -l -

X~ Oéldl + Oézdz e T ap;ip = DCM, Wl"'h |C¥|O <p

(Qlshausen and Field, 1997; Chen et al., 1999; Mallat, 1999; Elad and Aharon, 2006)
(Kavukcuoglu et al., 2009; Wright et al., 2009; Yang et al., 09; Boureau et al., 2010)



Let us start simple: How to denoise an image

N/
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means filtering (Buades et al.'0b) BM3D = representation on (3D) DCT

dictionary + NLM (Dabov et al.'07)

Take x ~3;a/d/ = Da but limit the number of nonzero coefficients |lal| <k



Let us start simple: How to denoise an image

N/

N

HEETEETTEN -
HEEEETTEEEN ©
HUNEEEENEYE

HENEEEEETEN

means filtering (Buades et al.'05) LSC: with sparsity
(Elad & Aharon'06; Mairal et al.'08)

min ) [lx; = Dal],” + Al ],

D,aq,...0n



Sparse coding and dictionary learning:
A hierarchy of optimization problems

min , 1/2 | x - Da |,2 Least squares
Sparse coding

min_1/2 | x-Da |2+ A |a|, Dictionary Ieaming
min . 1/2 | x - De |,2 + A v(a) Learning structures

anzls_isn [ 1/2 | X; = DQ{L |22 + A w(ajv) ]

''''''

W

anzlsisn [ f (xi' D, aL) + A leksq @/J(d&) ]

,,,,,,




The |1 norm and sparsity




1
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Dictionary learning

* Given some loss function, e.g.,

L(x,D)=1/2| x-

Da |22 + A |04|1

* One usually minimizes, given some data
X;,i=1, .., n, the empirical risk:

miann(D)z

leisn L ( Xi, D )

* But, one would really like to minimize the

expected one, that is:

minp f (D) =

i [L(x,D)]

(Bottoud Bousquet'O8 — Stochastic gradient descent)




Online sparse matrix factorization
(Mairal, Bach, Ponce, Sapiro, ICML'09, JMLR'10)

Problem:

min, f(D)=E, [L(x,D)]

L(X,D)zl/ZIX"'DO! |22+)\|O£|1

Algorithm:
Iteratively draw one random training sample x,
and minimize the quadratic surrogate function:

9:(D)=1/¢ leis‘r[ 1/2 | x;- Da; [,2+ X oyl ]

(Lars/Lasso for sparse coding, block-coordinate descent with warm
restarts for dictionary updates, mini-batch extensions, etc.)




Let us start simple: How to denoise an image

EEEEEEEEEEEEN
EEEEEEEEEEEEE
N/ EEEEEEEEEEEE
o \\\ EEEEEEEEEEEN
EEEEEEEEEEEE
EEEEEEEEEEEEN
HEEEEEEEEEEEEE
means filtering (Buades et al.'05) LSSC: Dictionary learning with

(Mairal et al.'09)

pip Zd1X — DAl + 2lladl,, where J1all,, = £, lal,






Real noise is complicated

« Noise = shot noise (physics) plus read noise (electronics)

« Random variable following a Gaussian distribution with zero mean and signal-dependent
standard deviation function (Foi et al., 2008)

N \/ay(u) + B

whose parameters a and 8 can be determined for a given camera

« This is only true for raw images. More on that later

A. Foi, M. Trimeche, V. Katkovnik, K. Egiazarian, "Practical Poissonian-Gaussian noise
modeling and fitting for single-image raw-data”, TEEE TIP 17(10):1737-1754 (2008).



Real noise (Canon Powersho’r G9, 1600 ISO)




Let us start simple: How to denoise an image

Self-attention (Vaswani et al., 2017)

1
X; = S;V;, where S; = softmax(~K;Q7})
T

where
K, =X, 14;, Q; = X;,_1B;, and V; = X, _1C;

N/
7N

X = SpXi_1Cr = Sk(Sk—1Xk—2Ck_1)Ck

means filtering (Buades et al.'05) Note: T, is a stochastic matrix, thus the rows of
T X are barycentric combinations of all the rows of

X, weighted in a complex way by their affinities
X;_14;B] X_,. (See also Andrej Karpathy's talk.)



Let us start simple: How to denoise an image

N/
SN

means filtering (Buades et al.'05) Note: Ty is a stochastic matrix, thus the rows of
T X are barycentric combinations of all the rows of
X, weighted in a complex way by their affinities
X;_14;B] X_,. (See also Andrej Karpathy's talk.)



Image interpolation

aka
Depixellisation

aka
Example-based super-resolution
aka

Single-image super-resolution

(Dahl et al., 2017)




Image interpolation
aka
Depixellisation
aka
Example-based super-resolution
aka
Single-image super-resolution

(Dahl et al., 2017)

Problem: Not enough information
in a single image: details must be
hallucinated



(FSRNET Chen et al., 2017)
(FSRGAN Zhu et al., 2020)
(PULSE Menon et al., 2020)




Generative vision

. . BN 2

4

\

https://magnific.ai/



Super-Resolution from a Single Image
(Glasner, Bagon, Irani, ICCV'09)
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Super-Resolution from a Single Image
(Glasner, Bagon, Irani, ICCV'09)

Key idea: exploit internal self-similarities



Super-Resolution from a Single Image
(Glasner, Bagon, Irani, ICCV'09)

> ‘Classical” SR

“Classical” SR

Example-based Example-based
SR : SR

Hi-res Sampling
image Dblur

/ ~ /

LJ( ):(H*B )(Q’) — E ; €ESupport(B;) H Qz) Q)




Super-Resolution from a Single Image
(Glasner, Bagon, Irani, ICCV'09)

o=

> ‘Classical” SR

“Classical” SR

Example-based Example-based
SR SR

- — -
. N

Hi-res Sampling
image Dblur

/ ~ /

LJ( ):(H*B )(Q’) — E ; €ESupport(B;) H Qz) Q)




True (= multi-frame) super-resolution: no need to hallucinate details

Input burst " : : :
— — Initial estimate Refined estimate

== F T e

- -~

F
Fr
) - ‘-
| ‘ | 'l ‘-
) | - ‘-

(Irani & Peleg, 1991; see also Tsai & Huang, 1984)



Super-resolution with “hallucination/recogstruction’

(Baker and Kanade, 2002)

}

« LR input image (1 of 4)
* Recogstruction
* Ground-truth HR image

* (Hardie et al., 1997)
* Bicubic interpolation

X 4, alignment
known exactly

Key idea: learn a prior on the spatial
distribution of the image gradient for
frontal images of faces



1 LR RGB image

20 LR raw images = burst

Single-image
interpolation

=

Super-resolution |
15 e I 0 O ) [

=

1 HR RGB image

1 HR RGB image




Handheld Multi-Frame Super-Resolution
(Wronski, Garcia-Dorado, Ernst, Kelly, Kainin, Liang, Levoy, Milanfar, SIGGRAPH'19)

-

(Lecouat et al.,, ICCV'21)

Key idea: exploit natural hand tremor and avoid single-image demosaicing altogether



Super-resolution as an inverse problem

LR input image yy

Warped HR image Resampled HR image Blurred HR image Decimated HR image

Wy

Latent HR image x

 Forward model: y, =U,, x +¢ fork =1,..,K with U, = DBW,,

Y1
 Solve min, % |y — U, x||? + A@ (x) where y = [ :
Yk

and U, =




Lucas-Kanade Reloaded: End-to-End Super-Resolution from Raw Image Bursts
(Lecouat, Ponce, Mairal, ICCV'21)

LR input image yy

Warped HR image Resampled HR image Blurred HR image Decimated HR image

- g (Warp s piecewise affine)
Latent HR image x

* Yo =U, x+¢g fork=1,..,K with U, =DBW, Note:
« Almost impossible to get real
training data

. ] 2 « . e e
e Define Xg (y) = argmin,,, % ” y — Up X ” + A(pe(x) Semi-synthetic” training data

constructed using ISP
inversion” (Brooks at al.,

- .. ) . 1 2019) with a realistic noise
« Minimize wrt 6 the objective ;stn % —xe (i) Il model




Optimization: unrolled iterative algorithm

1
min <[y — Up XH2 + Ao (x)
xp 2

1
min £, (x,z,p) = B ly — Up 2||* + %Hz —x||* + Ay (x) Quadratic penalty (aka HQS) method
P (three iterations)

z' 2zt -, [U;_l (Upt 7z —y)+u(z —XH)] One step of gradient descent (or a few)

1
r%in 5 lyx — DBW,, z'||* Gauss-Newton (aka Lucas-Kanade)
k

x' < arg min 'u””; |z" — x||* + Aoy (x) Proximal update
X

Increment u

K. Gregor, Y. LeCun, "Learning fast approximations of sparse coding”, ICML'10



Optimization: unrolled iterative algorithm

1
min <[y — Up XH2 + Ao (x)
xp 2

1
min £, (x,z,p) = B ly — Up 2||* + %Hz —x||* + Ay (x) Quadratic penalty (aka HQS) method
P (three iterations)

z' 2zt -, [U;_l (Upt 7z —y)+u(z —XH)] One step of gradient descent (or a few)

| » |
p, < pyt — (J5'J3%) Ji'rl  (3times) Gauss-Newton (aka Lucas-Kanade)

x' < arg min pri-1 |z" — x||* + Aoy (x) Proximal update

x 2

Increment u

K. Gregor, Y. LeCun, "Learning fast approximations of sparse coding”, ICML'10



Optimization: unrolled iterative algorithm

1
min <[y — Up XH2 + Ao (x)
xp 2

1
min £, (x,z,p) = B ly — Up 2||* + %Hz —x||* + Ay (x) Quadratic penalty (aka HQS) method
P (three iterations)

z' 2zt -, [U;_l (Upt 7z —y)+u(z —XH)] One step of gradient descent (or a few)

| » |
p, < pyt — (J5'J3%) Ji'rl  (3times) Gauss-Newton (aka Lucas-Kanade)

xt « fo(z4) Plug-and-play approach
(small residual U-net)
Increment u

K. Gregor, Y. LeCun, "Learning fast approximations of sparse coding”, ICML'10
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Raw image burst (Lumix GX9) High-quality picture
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(Small crop of) Burst of raw pictures (Lecouat et al., ICCV'21)
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Application: Thermal imaging - denoising + x4 super-resolution, 20 frames
80x62 waveshare IR camera, less than 190Euro
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