
Supervised learning and 
introduction to deep learning

Gül Varol 
IMAGINE team, École des Ponts ParisTech 

gul.varol@enpc.fr 

http://imagine.enpc.fr/~varolg/ 

@RecVis, 29.10.2024

With many slides from: J. Sivic, R. Fergus, A. Vedaldi, A. Zisserman, S. Lazebnik, A. Karpathy, L. Fei Fei, M. Aubry, N. Murray, J. 
Johnson, K. Derpanis, S. Yeung, A. Amini, F. Fleuret, A. Joulin, J. Austin, B. Liu, A. Jain

————————-——————-——————- Object recognition and computer vision 2024 ————-——————————-——————-

mailto:gul.varol@enpc.fr


•Assignment 2 out 
•Assignment 1 due today 
•Read papers to pick a final project topic

Announcements



•Assignment 2 out 
•Assignment 1 due today 
•Read papers to pick a final project topic 
•Reminder: Feedback form 

• You do not have to wait the end of the class, 
• You can fill again.

Announcements

https://forms.gle/x1ktzhnHmURCRHJF7



[Week 1] Introduction, local features and matching 
[Week 2] Camera geometry, image processing (J. Ponce) 
[Week 3] Efficient visual search 

[TODAY] Introduction to neural networks, training NNs 

[Next weeks] 
Neural networks for visual recognition: CNNs and image classification 
Beyond CNNs: Transformers; 
Beyond classification: other visual tasks 
…

Today: Introduction to deep learning



Agenda:

- Machine learning concepts 

- Basics of supervised learning 

- Introduction to neural networks 

- Training neural networks 
- Loss 
- Gradient descent and variants 
- Learning rate 
- Backpropagation 
- Regularization

5



Agenda:

- Machine learning concepts 

- Basics of supervised learning 

- Introduction to neural networks 

- Training neural networks 
- Loss 
- Gradient descent and variants 
- Learning rate 
- Backpropagation 
- Regularization

6



Remember:

NLP

Computer Vision

Machine Learning

“Deep” Learning

“AI”

Slide credit: Justin Johnson 7



What is Machine Learning (ML)?

● ML is the paradigm of approximating 
a function from data 

○ A function here is just a set of rules that takes in 
an input and spits out some output (like a label 
or a predicted value)

● Why ML instead of programming the functions ourselves? 
○ Sometimes we can’t possibly understand the patterns in our data, so it is extremely hard to come up 

with these rules! 
○ ML is fundamentally the process of allowing our data to guide a function’s creation

Slide credit: J. Austin, B. Liu, A. Jain



Challenge: write a function to classify digits?

input

for i in range(10, 30): 
 if image[10][i] > 0.5: 
  count += 1 
if low_thresh < count < high_thresh: 
 return 7

Nope

Slide credit: J. Austin, B. Liu, A. Jain



Challenge: write a function to classify digits?

Is there some way of separating 7’s 
from other digits?

Slide credit: J. Austin, B. Liu, A. Jain



ML

● Think of it as template creation! 
○ When we usually define a function by hand, we have to specify EVERYTHING 
○ With ML, we are going to define a function (with math), but leave out a few free parameters 

that will be learned from the data: these will dictate the exact behavior of the function 

● Example: 
○ We will define our function to have the form:  

if (input < a ) –> output1,  else –> output2,  
and learn the best value of a from our data 

○ Here ‘a’ is the free parameter that specifies 
       the exact behavior of our example function

Slide credit: J. Austin, B. Liu, A. Jain



What would a good value for ‘a’ be?

Note: This function is just a hypothesized 
function that we hope will work well based on 
what the data looks like

Slide credit: J. Austin, B. Liu, A. Jain



What would a good value for ‘a’ be? Probably a = 1

Input dimension

Slide credit: J. Austin, B. Liu, A. Jain



Previously, we had a single point, above which things were 
blue, and red otherwise. However, this strategy doesn’t 
really work in 2D… 

Now, we might try and hypothesize that a 1D line 
separates the data instead, above which all points are blue 
but red below.

This is our FUNCTION that we are 
hypothesizing exists… a 1D line in the form  

y = mx+b 

In this case, our parameters are m (the 
slope) and b (the intercept/offset)

2D Example

Slide credit: J. Austin, B. Liu, A. Jain



This idea continues on well beyond 2D as well. Here, our 
data is in 3D and we hypothesize that a 2D plane can 
separate the data, above which points are marked blue, 
below which they are marked red… and this again is our 
function definition. 

This can further continue on forever into higher 
dimensions! 

The challenge is that we can’t immediately visualize 
higher dimensional data, so it will be difficult to say if the 
data will nicely separate along some linear boundary like 
this or not…

3D and so on…

Slide credit: J. Austin, B. Liu, A. Jain



ML

● The art of ML is the following: 
○ Function: What form our function takes → this can be referred to as a model class 
○ Parameters: What specific parts of this function we are allowed to learn → these are our 

parameters 
○ Optimization: How we learn these parameters to approximate their “best” possible values 

● Every ML algorithm you will ever learn follows this pattern 
○ Describe the generic form of a function with free parameters 
○ Use the data to decide what free parameters will work best

Slide credit: J. Austin, B. Liu, A. Jain



Vocabulary

● Function / Model 
○ These terms are used interchangeably 
○ These refer to the function template (the “model class”) we have chosen for our problem 

● Parameters / Weights (and Biases) 
○ Another way to denote the parameters in ML models that are learned from data 

● Hyperparameters 
○ This is some non-learnable parameter (like model size, model type, details about training procedure, 

etc) that further specifies our overall learnable function 
○ We need to manually choose these ourselves before we start learning the learnable parameters 

● Loss Function

Slide credit: J. Austin, B. Liu, A. Jain

/ alternative terms?



Vocabulary

● Function / Model 
○ These terms are used interchangeably 
○ These refer to the function template (the “model class”) we have chosen for our problem 

● Parameters / Weights (and Biases) 
○ Another way to denote the parameters in ML models that are learned from data 

● Hyperparameters 
○ This is some non-learnable parameter (like model size, model type, details about training procedure, 

etc) that further specifies our overall learnable function 
○ We need to manually choose these ourselves before we start learning the learnable parameters 

● Loss Function / Cost Function / Risk Function / Objective / Error…

Slide credit: J. Austin, B. Liu, A. Jain



Vocabulary: “Feature”

● This can refer to bits of our data (either the inputs themselves or some 
representation of them) that we feed as input to a model 

○ e.g., for a house, you might input quantities like its “number of bedrooms”, “number of floors”, “area 
in square feet”, “cost of construction” etc. into a model that is trying to predict its price 

○ e.g., for an image input, you squish its pixel values into a vector OR extract things like corners, edges, 
shapes from it — these are both different “features” of the same image that can be fed into a model!

Slide credit: J. Austin, B. Liu, A. Jain



ML Pipeline

1. Define the problem 
2. Prepare the data 
3. Define the model + loss function 
4. Minimize the loss function (=train the model) 
5. DONE(!)

Slide credit: J. Austin, B. Liu, A. Jain

● What is the task? How do inputs/outputs look 
like? What is the success metric? …

● DO NOT UNDERESTIMATE 
DATA PREPARATION !!! 

● (Data = text, image, labels => numbers)

● More on these later.

Data prep?



ML Publication Venues

ICML: International Conference on Machine Learning [1980 
NeurIPS: Neural Information Processing Systems [1987 
… 
ICLR: International Conference on Learning Representations [2013 
AAAI: Conference on Artificial Intelligence [1980, 
JMLR: Journal of Machine Learning Research [2000,  
TMLR: Transactions on Machine Learning Research [2022 (new) 
…



Slide credit: J. Austin, B. Liu, A. Jain

Weakly-supervised? (Labeled for another task) 

Semi-supervised? (Dataset partially labeled) 

Self-supervised? (Unlabeled, data itself provides supervisory signal)

With labels. No labels. Rewards.

Weakly-supervised? 

Semi-supervised? 

Self-supervised?



Weakly-supervised? (Labeled for another task)

Category labels: car, jackal No box labels

Example: Object detection (i.e., bounding box and class label prediction)



Weakly-supervised? (Labeled for another task)

Available labels: sentence translations

No sign categories

Example: Sign language recognition (i.e., video classification)

SAD  ME WHY  RABBIT  DIE

I am sad because the rabbit died.

Continuous Sign Language Recognition

Translation

Sign categories (Glosses)

Spoken language sentences



Semi-supervised? (Dataset partially labeled)

Labeled Unlabeled

Predict 
“pseudo” 

labels Model 2

Train again 
with all data

Model 1

Train with 
existing labels

Very realistic 
scenario in today’s 

research

Noise in supervision



Self-supervised? (Unlabeled, data itself provides supervisory signal)

[Doersch, Gupta, Efros, “Unsupervised Visual 
Representation Learning by Context Prediction”, 
ICCV 2015]

8-way classification 
given two images

What is the problem 
formulation?

1 2 3

4 5

6 7 8



Agenda:

- Machine learning concepts 

- Basics of supervised learning 

- Introduction to neural networks 

- Training neural networks 
- Loss 
- Gradient descent and variants 
- Learning rate 
- Backpropagation 
- Regularization

27



Basics of supervised learning

28

•n training data pairs 

•Learn a predictor/decision function 

•By minimizing

f̂ : X ! A

(x1, y1), ..., (xn, yn) 2 X ⇥ Y

nX

i=1

l(f(xi), yi)



Basics of supervised learning

29

•n training data pairs 

•Learn a predictor/decision function 

•By minimizing

f̂ : X ! A

(x1, y1), ..., (xn, yn) 2 X ⇥ Y

nX

i=1

l(f(xi), yi)

LabelInputModelLoss



Deep learning

30

nX

i=1

l(f(xi), yi)

LabelInputModelLoss

Deep learning: 
Model = neural network



What is a “deep” neural network?

31

Stacking more than one layer

W1 W2

(Layer 1) (Layer 2)



Disclaimer: Terminology
• Deep learning 

• Neural networks? 

• Artificial neural networks? 

• Multilayer neural networks? 

• …

32



Disclaimer: Terminology
• Deep learning 

• Neural networks? 

• Artificial neural networks? 

• Multilayer neural networks? 

• …

33

2007

Genius Makers, Cade Metz 2021.

https://www.youtube.com/watch?v=H7DgMFqrON0

https://www.youtube.com/watch?v=H7DgMFqrON0


What is a layer?

34

• Fully-connected layer 
• Convolution layer 
• Pooling layer (e.g., Max-pooling) 
• Non-linearity layer (e.g., ReLU) 
• Attention layer 
• …

Typically matrix multiplication! (But the function can take many forms*)

*requirement to be differentiable if optimized with gradient descent algorithm variants

More on different types 
of layers next week



What is a neuron? Perceptrons

35

Most basic form of a neural network

[Rosenblatt, 1957]

Bias

Linear combination 
of inputs

Non-linearity



Slide credit: Lana Lazebnik



Multi-Layer Perceptron (MLP)

37
Slide: R. Fergus / S. Lazebnik

Linear regression: Perceptron:

W1 W2

(Layer 1) (Layer 2)

W W

X X

X Y

YY

MLP:



Multi-Layer Perceptron (MLP)

38
Slide: R. Fergus / S. Lazebnik

W1 W2

(Layer 1) (Layer 2)

X Y

MLP:

*YPP]�GSRRIGXIH�PE]IVW

��

Linear / fully connected layer 
= multiplication



Neural networks 
for Computer Vision

39



Images are numbers

40 Slide credit: Alexander Amini



Analogy to the traditional visual recognition pipeline

41

•Features are not learned (e.g., HOG, SIFT, Bag of Features) 
•Trainable classifier is often generic (e.g., SVM, Random Forest)



42

Analogy to the traditional visual recognition pipeline

•Features are learned “end-to-end” (i.e., pixels are input) 
•”Feature hierarchy” all the way from pixels to classifier 
•Each layer extracts features from the output of previous layer 
•Train all layers jointly



43

Analogy to the traditional visual recognition pipeline

•Features are learned “end-to-end” (i.e., pixels are input) 
•”Feature hierarchy” all the way from pixels to classifier 
•Each layer extracts features from the output of previous layer 
•Train all layers jointly



Agenda:

- Machine learning concepts 

- Basics of supervised learning 

- Introduction to neural networks 

- Training neural networks 
- Loss 
- Gradient descent and variants 
- Learning rate 
- Backpropagation 
- Regularization

44



Training NNs

45



Recap: Basics of supervised learning

46

•n training data pairs 

•Learn a predictor/decision function 

•By minimizing

f̂ : X ! A

(x1, y1), ..., (xn, yn) 2 X ⇥ Y

nX

i=1

l(f(xi), yi)

LabelInputModelLoss



• Using a set of parameters 
• e.g., linear/polynomial regression, neural networks 

• Directly using the training data, i.e., non-parametric 
• e.g., k-nearest neighbors

How can we define f?



Loss Function

48

• Regression: 

• L1 (absolute error) / L2 (squared error) 

• Classification: 

• Cross-entropy loss



Loss Function: Regression

49

Estimating a continuous value 

• L1 (absolute error) 

• L2 (squared error)

𝐿 = (𝑓(𝑋𝑖,  𝜃)  − 𝑌𝑖)2

𝐿 =  𝑓(𝑋𝑖,  𝜃) − 𝑌𝑖

Prediction: 
output of 

the network f 
with parameters  

given input Xi

Ground truth: 
(label, annotation)

𝜃



Loss Function: Classification

50

• Cross-entropy loss = softmax + negative log-likelihood

Fig: Micheleen Harris

Loss = 0.34+0.02+0.71 = 1.07

e5

e5 + e4 + e2



• Non convex! 

• Solution: go back to the simplest algorithms, variations around gradient descent, 
and hope for the best. 

• Note: every layer needs to be differentiable almost everywhere. 

• It (mainly) works! (but requires a lot of know-how)

Learning deep networks



From left to right
decreasing spatial resolution
increasing feature dimensionality

“Fully-connected” layers (f6, f7, f8)
same as convolutional, but with 1 ⨉ 1 spatial resolution
contain most of the parameters

52

c1 c2 c3 c4 c5 f6 f7 f8 class

Slide: A. Vedaldi

Example CNN architecture: AlexNet



Convolutional layers

Each block c1, c2, …, f8: convolution + ReLU + pooling.

53

(W, b)

linear 
filters

ReLU

non-linear 
activation

max 
pool

pooling

c1 c2 c3 c4 c5 f6 f7 f8 class



Training a CNN 54

c1 c2 c3 c4 c5 f6 f7 f8 l

Yi : bike

loss

w1 w2 w3 w4 w5 w6 w7 w8

, where𝜃∗ = 𝑎𝑟𝑔min 𝐿(𝜃 |𝑋,  𝑌)
𝜃

𝜃 = {𝑤1,  𝑤2, 𝑤3, …,  𝑤8}

data

parameters / filters / weights / kernels…

Xi : image

loss / objective / error

𝐿(𝜃) = 1
𝑁 ∑

𝑖
𝑙(𝜃,  𝑋𝑖,  𝑌𝑖)

sum over data points



Training a neural network

55
Slide: A. Joulin



Hill Metaphor

● If you are on a hill and you want to reach the bottom, 
but can only see a foot around you, what do you do? 

○ We should just follow the slope of the hill and hope it gets us down 
right? 

● We will need to take a couple steps in the downward 
direction, stop and re-evaluate our direction, then take 
a few more steps and so on

Slide credit: J. Austin, A. Jain



Which direction is the steepest?

● Suppose the hill’s elevation is given by a vector function 
● It’s steepest descent is along the negative gradient vector 
○ → If we want to go down a hill, follow the negative gradient evaluated at our current 

position

Slide credit: J. Austin, A. Jain



Gradient descent

58

• The objective function is an average over all N training data points: 

• Performing a gradient descent is iterating. 

• Need to choose the learning rate policy  

• If the function is not convex, get stuck in a local minimum 

• Each step can be expensive to compute if the dataset is large

𝛼𝑡

𝐿(𝜃) = 1
𝑁 ∑

𝑖
𝑙(𝜃,  𝑋𝑖,  𝑌𝑖)

Image source

Image source

Parameter value

C
os

t

step

Convex case

Non-convex

https://winder.ai/blog/2017/img/gradient_descent_issues.svg
https://miro.medium.com/max/1400/1*WGHn1L4NveQ85nn3o7Dd2g.webp


Stochastic gradient descent

59

• Instead of computing the gradient, compute an approximation: 

• Can take advantage of large datasets, in particular infinite* datasets! 

• Introduce stochasticity, which might be good to get out of local minima in the non-convex case



Stochastic gradient descent with minibatch

60

• Some variance is good, too much can be bad 

• It’s faster to compute several gradients in parallel 

• In practice, using batches as large as possible so that the network fits in the GPU memory (e.g., 
between 256 images, 10 videos, 1000 features, could be very different depending on the task, 
network, GPU hardware)

(with K << N)

Why?



61

Summary: Stochastic Gradient Descent (SGD)

Slide credit: Andrea Vedaldi



Stochastic gradient descent (SGD)

Details: 
Epochs: all points are visited sequentially, but random order within epoch 
Minibatch size: set to largest value permitted by the hardware 
Validation: evaluate L(   ) on a held-out validation set to diagnose objective decrease 
Learning rate: e.g., decreased tenfold once the objective L(   ) stops decreasing, cosine LR scheduler… 
SGD with momentum: the gradient estimate is smoothed by using a moving average to encourage 
directions that are coherent:

𝜃
𝜃



Optimization

● Can we do better than vanilla gradient descent? Yes

vanilla update rule for reference



Beyond vanilla SGD



Not all direction are equal



Not all direction are equal

We want to go fast in some directions, slow in others 



Vectorized SGD: one step size per dimension

ith dimension of the parameters at step t (scalar)θt,i



Vectorized stepsize example: Adagrad

• “No need” to set a learning rate schedule 
• Gt,i is the accumulation of the squared gradients 
• Squared norm avoids exploding or vanishing gradient  
• ε avoids numerical issues. 

•Some parameters might have more gradient signal than others. 
•Adapt the learning rate to how much signal there is for each gradient parameter.

j,i



Use previous gradients

Previous gradients are not bad estimates of current 
curvature



Example: momentum
Gradient estimate is smoothed by using a moving average to encourage directions that are coherent:



Example: momentum



Vectorized stepsize example: RMSProp

● Instead of keeping a weighted average of gradients, keep a weighted 
average of squared gradient components 

● Similar idea to AdaGrad, but running avg instead of sum over all 
samples for the normalization 

● Similar to ADAM, but no momentum



Vectorized stepsize example: RMSProp

● Case 1: The gradients have been really 
small in the past 

○ Moving average of squared gradients will be even tinier 
○ The square root of this moving average will be a really 

small number, and dividing by it should increase the 
size of the final gradient update 

● Case 2: Our gradients have been really big 
in the past 

○ Moving average of squared gradients will be huge 
○ The square root of this moving average will be a really 

large number, and dividing by it should decrease the 
size of the final update

Takeaway: this helps combat the issue 
that gradients can be varying in size, 
causing us to either get stuck from 
small gradients or blow past our mark 
with large gradients. RMSProp makes 
sure our steps never get too big or too 
small!

Slide credit: J. Austin, H. Jalan, A. Jain



Momentum + vectorized stepsize = ADAM
•Combination of momentum and RMSProp 
•Keep 2 moving averages: 1 for the gradients and 1 for the squared gradients



Beyond SGD Summary 76

•Many other algorithms. Good overview http://ruder.io/optimizing-gradient-descent/ 

•AdaGrad: Some parameters might have more gradient signal than others. Adapt the learning rate to how much 
signal there is for each gradient parameter. 

•RMSProp: Similar idea to AdaGrad, but use running average instead of sum over all samples for the normalization 

•ADAM: Combination of momentum and RMSProp, currently the most popular optimizer for NNs, along with AdamW 
(improved version where the weight decay is performed differently)  

•Notes:  
•all these optimizers are coded in standard deep learning libraries 
•It’s hard to keep good intuitions with complex optimizer, if things don’t work/you are lost, go back to batch SGD

Slide: M. Aubry



Learning rate

77



Learning rate policy 78

• There is no standard policy with NNs. 

• The best is usually to pick a LR as high as possible without having the algorithm diverge, keep it constant 
until convergence, then decrease it (and iterate that until there is no difference). Other more complex 
approaches are also widely used such as sinusoidal LR schedules, linear warmup etc. 

• LR schedules even help with adaptive optimizers (e.g., AdaGrad) 

• There are no guarantees with NNs, looking at training curves is crucial!

Slide: M. Aubry

Image source

https://static.javatpoint.com/tutorial/machine-learning/images/gradient-descent-in-machine-learning3.png


Large learning rate: Overshooting. 
Divergence.

Small learning rate: Many 
iterations until convergence and 

trapping in local minima.



Fixed learning rate



Linear decay, step decay 



Cosine scheduler

• Decay with a cosine function

Loshchilov & Hutter, SGDR: Stochastic Gradient Descent with Warm Restarts, ICLR 2017



Linear “warmup”

scheduler = CosineScheduler(20, warmup_steps=5, base_lr=0.3, final_lr=0.01) 
d2l.plot(torch.arange(num_epochs), [scheduler(t) for t in range(num_epochs)]) 

•Large LR initially => divergence. 

•A sufficiently small LR prevents divergence in the beginning. But, this means that progress is slow. 

•A rather simple fix for this dilemma is to use a warmup period during which the LR increases to its initial maximum.

Figure from https://d2l.ai/chapter_optimization/lr-scheduler.htmlLoshchilov & Hutter, SGDR: Stochastic Gradient Descent with Warm Restarts, ICLR 2017



• For logistic regression, a good initialization is in the range 
{0.01, 0.05, 0.1, 0.3, 0.5, 1} 

• Rule of thumb: pick the LR that is “just below” the one where the network diverges.

84

Magic (!) 0.03

Initial learning rate

* If you start seeing values like 1e-8, there might be something else to change, initialization, normalization etc. 
** Multi-tasking (multiple loss terms) is tricky to set a single learning rate for all tasks.



Computing the gradients 85

• Deep neural networks include a lot of operations, so it’s important to compute the gradient efficiently.  

• It helps to leverage GPUs by computing the gradient for several inputs, performing batch SGD 

• While in theory, we just have the gradients of composite functions and for that apply chain rule, there 
is an efficient way to do it, called back-propagation.

Slide: M. Aubry



Backpropagation

86

Computing the gradients: While in theory, we just have the gradients of composite functions and for that 
apply chain rule, there is an efficient way to do it, called backpropagation. Computing derivatives using the chain rule

Backpropagation 49

ℝx
forward

derror
dw1

derror
dw2

derror
dw3

derror
dw4

derror
dw5

derror
dw6

derror
dw7

derror
dw8

backward

c1 c2 c3 c4 c5 f6 f7 f8 l loss

w1 w2 w3 w4 w5 w6 w7 w8

Slide: A. Vedaldi

Xi : image

Yi : bike

Slide credit: Andrea Vedaldi [Derivatives, Backpropagation, and Vectorization] http://cs231n.stanford.edu/handouts/derivatives.pdf

http://cs231n.stanford.edu/handouts/derivatives.pdf


Chain rule: scalar version

87

Chain rule: scalar version 117

f1 f2 fn-1 fn
xnx1

…
x0 xn-1

Slide: A. Vedaldi

Slide credit: Andrea Vedaldi



88Slide credit: Andrea Vedaldi

Chain rule: scalar version 118

xn x1
…

x0xn-1

…

…

A composition of n functions

Derivative obtained using the chain rule

Slide: A. Vedaldi

Chain rule: scalar version



Derivatives: 
•Scalar case  
•Gradient: Vector in, Scalar out  
•Jacobian: Vector in, Vector out  
•Generalized Jacobian: Tensor in, Tensor out  

Impractical to store in memory  
e.g., for a fully connected layer that takes as input a minibatch of N vectors, each dimension D, 
and produces a minibatch of N vectors, each dimension M: 
=> Jacobian matrix (N x M) x (N x D) 
=> 68 billion numbers (256GB) if N=64, M=D=4096 
Chain rule: start from the loss which is a scalar, no explicit forming of the entire Jacobian  

[Derivatives, Backpropagation, and Vectorization] http://cs231n.stanford.edu/handouts/derivatives.pdf

Backpropagation

89

http://cs231n.stanford.edu/handouts/derivatives.pdf


Computational Graphs

● Say we have some function e(c, d), but c and d 
are functions of other variables. We have c(a, b) 
and d(b) 

● We can write how these functions depend on each 
other as a tree 

● We call this a computational graph because it 
tells us how to compute the final value e from leaf 
nodes (inputs) a and b 

● Each node in this tree is a function of the 
incoming nodes

Slide credit: J. Austin, H. Jalan, A. Jain



Computational Graphs and the Chain Rule

● If we want to calculate derivatives of an 
input with respect to the output, we need to 
use the multivariable chain rule 

○ Sum over all unique paths from the input to the output 
○ For each path, multiply all partial derivatives of each 

output node with respect to the corresponding input node

Slide credit: J. Austin, H. Jalan, A. Jain



Backpropagation

● Here is an example of a computational graph of a toy neural network’s MSE 
loss on a single training example 

○ This neural network has only one neuron per layer, making inputs and outputs scalars 

● Our objective with gradient descent is to calculate the partial 
derivative of the output with respect to w1, w2, w3, b1, b2 and 
b3… but we don’t want to do 6x the computation… how can we do this?

Slide credit: J. Austin, H. Jalan, A. Jain



Backpropagation

● We can write out the chain rule for all these, and see if there is anywhere 
that we can optimize and save ourselves some compute 

● Note: We will be writing out a lot of partial derivatives… each one is 
being evaluated for under the current training example and the 
current parameters

Slide credit: J. Austin, H. Jalan, A. Jain



Scalar Computation Graph Example

● In this example, x, y, b1, b2, b3, w1, w2, w3 are scalars

Side note: on the forward pass, we calculate and save things like the 
partial of z_3 with respect to a_3, so that we can use it here later

Slide credit: J. Austin, H. Jalan, A. Jain



Scalar Computation Graph Example

We can see that we’ve calculated these values multiple times

● In this example, x, y, b1, b2, b3, w1, w2, w3 are scalars

Slide credit: J. Austin, H. Jalan, A. Jain



Backpropagation

● Rather than calculating these values again 
with repeated multiplication, let’s just save 
and reuse them 

○ This saves a lot of redundant calculations for 
deep neural networks 

● We will simply work from the end of the 
network to the front, caching values 
that we need as we go along 

● Note: All the partials here are being 
evaluated for the current data and 
parameters…

1) First we calculate the update for W3, 
caching the red 

2) Then we use the red to calculate the blue 
value before calculating the update for W2 

3) This pattern of using the last computation to 
save redundant multiplications on the next 
update continues

Slide credit: J. Austin, H. Jalan, A. Jain



Backpropagation: Takeaways

● The thing you need to take away from backprop is that it is a fast 
method of getting all of the partial derivatives needed for 
gradient descent, removing redundant (matrix) multiplications 

○ We do this by working from the end of the computational graph to the front, caching any 
computation used in calculating the previous partial derivatives 

○ By working from the end of the graph to the front, we can handle much more complex 
computational graphs quickly and efficiently 

● Modern auto-differentiation software like pytorch will keep track of the 
graph and calculate our gradients with backprop 

○ It can handle arbitrarily large computational graphs

Slide credit: J. Austin, H. Jalan, A. Jain



Vanishing / exploding gradients

Multiplying too many small/big values.
Solutions: 
• Initialization techniques 
• Use ReLU (non saturating) 
• Use skip connections in the network 

• Use batch normalization
• Use gradient clipping
• Use warmup LR scheduler

Slide: M. Aubry



Batch normalization
• A layer to try avoiding vanishing or exploding signal, 

• Idea: normalize the data everywhere in the network using estimates of the mean/variance 

•            are learnt,           are estimated, all have the same dimension as 
•            are estimated over a mini-batch, or updated using a momentum 
• Batch-norms are typically place just before non-linearities

Slide: M. Aubry

• Careful: often source of bugs! 
• Different behavior during training and testing:          are estimated on one batch during training, stable 

estimates are estimated with momentum and fixed during test (network in train/test modes) 
• Requires large and diverse batches



Gradient clipping

Avoid gradient explosion by clipping the value of gradient 
below some norm:



Warm-up

• Most gradient explosion happens at the beginning of training 

• Because matrices are poorly set and learning rates are large 

• Solution: start with small learning and increase it 



Warm-up



“Problems” with training

103

• Underfitting: 
• making poor predictions on the training (and test) data 
• not enough parameters to express complexity in data 

• Overfitting: 
• too many parameters match too well complexity in training 

data 
• not generalizing to unseen data, i.e., high performance on 

training set, low on test set



Example: polynomial regression of degree M

104



Validation set

“Typical” machine learning setup

105

(Sometimes referred as 
“development” set)

Allowed to make statistics, learn models, 
tune hyperparameters

Not allowed to “see”

•Learn models on the training set 
•Evaluate on the validation set many times (run experiments to find good hyperparameters, 

e.g., number of epochs, learning rate, batch size…) 
•(Optional: Learn the final model on the combination of training and validation sets) 
•Evaluate on the test set “once”

Training set Test set

                                              Data split into three sets                                                                _             



A few possible scenarios for learning curves

106Image sources

Good fit: both decreasing, 
converging, minimal gap

Overfit: validation increasing Underfit: training loss not decreasing Underfit: training halted prematurely

Unrepresentative validation set: 
too few examples

Unrepresentative validation set: 
easier than training set

Credit: Jason Brownlee
number of iterations/epochs

lo
ss

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/author/jasonb/


How to avoid overfitting?

•Smaller network, i.e., less parameters 
•Data augmentation 
•Suboptimize, i.e., “early stopping” 
•Force redundancy in hidden units, i.e., “dropout” 
•Penalize parameter norms, i.e., “weight decay”

Deep networks have many parameters. 
Some regularization techniques:

L2 penalty: 
encourages the norm of 
the parameters to be low

𝐿(𝜃) + 𝜆
2   |𝜃 |

2
2

 
𝜃𝑡+1 → 𝜃𝑡  − 𝛼 

𝜕𝐿
𝜕𝜃𝑡

  − 𝛼 𝜆𝜃𝑡

gradient

E
ar

ly
 s

to
pp

in
g

Image source

Data augmentation

107

https://www.baeldung.com/wp-content/uploads/sites/4/2022/08/AugmentData.png


Weight regularization
3 complementary approaches: 

• Regularizing the weights with weight decay 
• Initialization 

• Normalization of activations



Why is weight regularization important?

• Many networks produce same results 

• Examples: permutations of weights, invariant to multiplication… 

• We can reduce space of exploration to smaller set of networks 

 Faster convergence 



Weight decay

L2 penalty: 
encourages the norm of 
the parameters to be low

𝐿(𝜃) + 𝜆
2   |𝜃 |

2
2

 
𝜃𝑡+1 → 𝜃𝑡  − 𝛼 

𝜕𝐿
𝜕𝜃𝑡

  − 𝛼 𝜆𝜃𝑡

gradient

λ
λ



Weight Initialization



Weight Initialization



Fan-in initialization



Data normalization (whitening)



Intermediate normalization 

Example: batch normalization (batchnorm)



Recap: Batch normalization
Why “batch”? 
Disadvantages?



Summary of optimization

Standard optimization:   
• ADAM (or AdamW) 

• clipping 

• cosine scheduler 
• warm-up 
• init based on fan-in 

• grid search over initial learning rate and weight decay



Look at your results

118

• When you train a network, you should try to really understand what is happening: 
• Train/val/test sets are important 
• Look at loss and performance on train/val sets during training 
• Choose LR, compare networks, try different initialization (random seeds) 
• Try to overfit on a subset of the training set first 

• Very important: Look at your data and results (e.g., visualize predictions) on 
training and testing data.

Slide: M. Aubry

More tips at Andrej Karpathy blog: 
A Recipe for Training Neural Networks https://karpathy.github.io/2019/04/25/recipe/

https://karpathy.github.io/2019/04/25/recipe/


Practical problems

119

• Data loading:  
• Loading “on the fly”: needed for big datasets, use efficient database 

structure, fast disk access, e.g., SSD 
• Loading to RAM: possible for smaller datasets, or pre-computed features 

• Speed: use GPUs, parallel data loading 
• Network size: get lots of memory on your GPU or/and use several GPUs 

Good news: you don’t have to do all of it! 
Many ready-to-use and efficient frameworks are available (e.g., Pytorch)

Slide: M. Aubry



NN packages

120

• PyTorch (Python) 
• http://pytorch.org/ 

• TensorFlow (Python) - Google 
• https://www.tensorflow.org/ 

• Lua Torch 
• http://torch.ch/ 

• Caffe (C++, pycaffe, matcaffe) 
• http://caffe.berkeleyvision.org/ 

• MatConvNet (Matlab) 
• http://www.vlfeat.org/matconvnet/

…

http://pytorch.org/
https://www.tensorflow.org/
http://torch.ch/
http://torch.ch/
http://torch.ch/
http://caffe.berkeleyvision.org/
http://www.vlfeat.org/matconvnet/


121

• The key objects are  
- model,  
- optimizer, 
- dataloader, 
- loss.

Slide: M. Aubry

Let’s look at 
some code

• Key part of  
pytorch code 
for CNN learning

(more in Assignment 2)


