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Announcements

* Assignment 2 out
* Assignment 1 due today
* Read papers to pick a final project topic

* Reminder: Feedback form

* You do not have to wait the end of the class,

* You can fill again.

hitps://forms.gle/x1kizhnHmURCRHJF7

Feedback for RecVis Fall 2024

Thank you for attending the computer vision class at MVA
(https://www.di.ens.fr/willow/teaching/recvis24/). This is a quick survey to collect

anonymous feedback to improve this class for the following years. The responses can be

shared with the current and future lecturers of the class.

gulvarols@gmail.com Switch account

Ca Notshared

Any feedback about the lectures? The level of difficulty, content, order of the
lectures, the number of lecturers, pedagogy, time, room...

Your answer

Any feedback about the assignments?

Your answer

Any feedback about the final project?

Your answer

Did you use the Google Cloud Credits provided?

&



Today: Introduction to deep learning

[Week 1] Introduction, local features and matching

[Week 2] Camera geometry, image processing (J. Ponce)
[Week 3] Efficient visual search

[TODAY] Introduction to neural networks, training NNs

[Next weeks]
Neural networks for visual recognition: CNNs and image classification
Beyond CNNs: Transformers;
Beyond classification: other visual tasks



Agenda:

- Machine learning concepts
- Basics of supervised learning
- Introduction to neural networks

- Training neural networks
- Loss
- Gradient descent and variants
- Learning rate
- Backpropagation
- Regularization
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Remember:
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Slide credit: Justin Johnson



What is Machine Learning (ML)?

DATA (INPUT)

o . o . % aye
e MLis the paradigm of approximating Jitiona!
a function from data Program
o A function here is just a set of rules that takes in

an input and spits out some output (like a label T,

or a predicted value) > Machine
Learning

Output

e Why ML instead of programming the functions ourselves?

o Sometimes we can’t possibly understand the patterns in our dataq, so it is extremely hard to come up
with these rules!
o ML is fundamentally the process of allowing our data to guide a function’s creation

Slide credit: J. Austin, B. Liu, A. Jain



def classify_image(image: list[list[int]]) -> 1int:

TODO

return

|
2
3
4

for 1 1n range (™, 30)2
if imag®™~NO] [1] > 0.5:
comnt += 1
1f low tphe€sh < count < high™sfyresh:
return 7/

Challenge: write a function to classify digits?

Slide credit: J. Austin, B. Liu, A. Jain



Is there some way of separating 7’s
from other digits?

Challenge: write a function to classify digits?

Slide credit: J. Austin, B. Liu, A. Jain



ML

e Think of it as template creation!

o  When we usually define a function by hand, we have to specity EVERYTHING
o With ML, we are going to define a function (with math), but leave out a few free parameters
that will be learned from the data: these will dictate the exact behavior of the function

o EXCImPIe: def function(input, a):

o We will define our function to have the form: | | _ L
input (int) - our function's input

1f (i1nput < a ) —-> outputl, else —> output?Z, a (int) - our parameter that we will learn
and learn the best value of a from our data Returne -
o Here ‘a’ is the free parameter that specifies True / False classification
the exact behavior of our example function if input < a:
return 'red’
else:

return 'blue'

Slide credit: J. Austin, B. Liu, A. Jain



def function(input, a):
input (int) - our function's input
a (int) - our parameter that we will learn

Returns:
True / False classification

return 'red'
else:
-1 0 1 5 E return 'blue'’

Note: This function is just a hypothesized
function that we hope will work well based on
what the data looks like

What would a good value for ‘a’ be?

Slide credit: J. Austin, B. Liu, A. Jain



def function(input, a):
input (int) - our function's input
a (int) - our parameter that we will learn

Returns:
True / False classification

if [ input < a:

return 'red'
else:
-1 0 1 4 E return 'blue'

Input dimension

- —4
—
—

What would a good value for ‘a’ be? Probably a = 1

Slide credit: J. Austin, B. Liu, A. Jain



2D Example

Previously, we had a single point, above which things were
blue, and red otherwise. However, this strategy doesn’t

really work in 2D...

Now, we might try and hypothesize that a 1D line
separates the data instead, above which all points are blue
but red below.

- This is our FUNCTION that we are
3 -2 -1 o0 1 2 3 4 5 6 hypothesizing exists... a 1D line in the form
y = mx+b

In this case, our parameters are m (the
slope) and b (the intercept/offset)

Slide credit: J. Austin, B. Liu, A. Jain



3D and so on...

This idea continues on well beyond 2D as well. Here, our
data is in 3D and we hypothesize that a 2D plane can
separate the data, above which points are marked blue,
below which they are marked red... and this again is our
function definition.

This can further continue on forever into higher

dimensions!

The challenge is that we can’t immediately visualize

higher dimensional dataq, so it will be ditficult to say if the

data will nicely separate along some linear boundary like
this or not...

Slide credit: J. Austin, B. Liu, A. Jain



ML

o The art of ML is the following:

o Function: What form our function takes — this can be referred to as a model class
o Parameters: What specific parts of this function we are allowed to learn — these are our

parameters
o Optimization: How we learn these parameters to approximate their “best” possible values

e Every ML algorithm you will ever learn follows this pattern

o Describe the generic form of a function with free parameters
o Use the data to decide what free parameters will work best

Slide credit: J. Austin, B. Liu, A. Jain



Vocabulary

e Function / Model

o These terms are used interchangeably
o These refer to the function template (the “model class”) we have chosen for our problem

e Parameters / Weights (and Biases)

o Another way to denote the parameters in ML models that are learned from data

e Hyperparameters

o This is some non-learnable parameter (like model size, model type, details about training procedure,
etc) that further specifies our overall learnable function
o We need to manually choose these ourselves before we start learning the learnable parameters

e Loss Function / alternative terms?

Slide credit: J. Austin, B. Liu, A. Jain



Vocabulary

e Function / Model

o These terms are used interchangeably
o These refer to the function template (the “model class”) we have chosen for our problem

e Parameters / Weights (and Biases)

o Another way to denote the parameters in ML models that are learned from data

e Hyperparameters

o This is some non-learnable parameter (like model size, model type, details about training procedure,
etc) that further specifies our overall learnable function
o We need to manually choose these ourselves before we start learning the learnable parameters

e Loss Function / Cost Function / Risk Function / Objective / Error...

Slide credit: J. Austin, B. Liu, A. Jain



Vocabulary: “Feature”

e This can refer to bits of our data (either the inputs themselves or some
representation of them) that we feed as input to a model

o e.g., for a house, you might input quantities like its “number of bedrooms”, “number of floors”, “area
in square feet”, “cost of construction” etc. into a model that is trying to predict its price
o e.g., for an image input, you squish its pixel values into a vector OR extract things like corners, edges,

shapes from it — these are both different “features” of the same image that can be fed into a model!

Slide credit: J. Austin, B. Liu, A. Jain



ML Pipeline What is the task? How do inputs/outputs look

like® What is the success metrice ...

Define the problem
. Prepare the data

.O'IAOOI\).—-

. N :

. De.fu?e the model + loss function 5O NOT UNDERESTIMATE

. Minimize the loss function (=train the model) DATA PREPARATION 111
DONE(|) (Data = text, image, labels => numbers)

Data prep?

More on these later.

Slide credit: J. Austin, B. Liu, A. Jain



ML Publication Venues

ICML: International Conference on Machine Learning [1980
NeurlPS: Neural Information Processing Systems [1987

ICLR: International Conference on Learning Representations [2013
AAAI: Conference on Artificial Intelligence [1980,

JMLR: Journal of Machine Learning Research [2000,
TMLR: Transactions on Machine Learning Research [2022 (new)



Machine
Learning

Supervised Reinforcement
Task driven Data driven Algorithm learns to
(Regression / ( Clustering ) react to an
Classification) environment

[Ty : F‘\*&*‘;j g A
;j{’ iy > 4 k
Classification “;:g:e:s:):
With labels. No labels. Rewards.

Weakly-supervised? (Labeled for another task)
Semi-supervised? (Dataset partially labeled)

Self—supervised? (Unlabeled, data itself provides supervisory signal)
Slide credit: J. Austin, B. Liu, A. Jain



Weakly-supervised? (Labeled for another task)

Example: Object detection (i.e., bounding box and class label prediction)

Category labels: car, jackal No box labels

B o> &(‘ - h L 'e‘ ]
y \ ) X gL w
o aia ~ k< CIAL Y &
. “x - ~

e




Weakly-supervised? (Labeled for another task)

Example: Sign language recognition (i.e., video classification)

No sign categories

Sign categories (Glosses)

SAD M]

(1]

WHY RABBIT DIE

Spoken language sentences [ am sad because the rabbit died.

Available labels: sentence translations



: : : Very realistic
Semi-supervised? (Dataset partially labeled)  cenario in today’s

research
bl
T
Train with Train again
existing labels Predict with all data

“pseudo”

Noise in supervision




Self-supervised? (Unlabeled, data itself provides supervisory signal)

Example:
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Figure 1. Our task for learning patch representations involves ran-
domly sampling a patch (blue) and then one of eight possible
neighbors (red). Can you guess the spatial configuration for the
two pairs of patches? Note that the task 1s much easier once you
have recognized the object!

[Doersch, Gupta, Efros, “Unsupervised Visual
Representation Learning by Context Prediction”,

ICCV 2015]

What is the problem
formulation?

8-way classification
given two images



Agenda:

- Machine learning concepts

- Basics of supervised learning

- Introduction to neural networks

- Training neural networks
- Loss
- Gradient descent and variants
- Learning rate
- Backpropagation
- Regularization

27



Basics of supervised learning

* 1 training data pairs (Z1,91)5 s (Tns Yn) € X X Y
* Learn a predictor/decision function f:x— A
* By minimizing zn: I(F(

28



Basics of supervised learning

* 1 training data pairs (Z1,91), s (TnyYn) € X XY
* Learn a predictor/decision function f X — A

®* By minimizin
Y g sz)’ n

71N\

Loss  Model Input  Label

29



Deep learning

Loss  Model Input  Label

Input Hidden Lavyer Output

Layer Layer
Input #1 —" Deep learning:
\\'l Model = neural network
lQ"
Input #2 —= .\‘"b .

Y

B o
Input #3 —» "'{‘

N
Input #4 —= \



What is a “deep” neural network?

Stacking more than one layer

Input #1 —»=

Input
Laver

9
o
Input #2 —= .:%:;’é . )
TN N
X O——=(-

Hidden Lavyer

SR
Input #3 —- i
58N

Input #4 —=

31

(Layer 1)

(Layer 2)

Qutput
Layer

~ Output



Disclaimer: Terminology
* Neural networks?

 Artificial neural networks?

* Multilayer neural networks?

32



Disclaimer: Terminol

together—not separately—as they chased
the Watergate story. It provided a way of
sharing ideas. In Toronto, one idea was a
new name for this very old technology.
When Hinton gave a lecture at the an-
nual NIPS conference, then held in Van-

‘
couver, on his sixtieth birthday, the phrase 2 007
“deep learning” appeared in the title for the '
first time. It was a cunning piece of re-
branding. Referring to the multiple layers
of neural networks, there was nothing new
e S about “deep learning.” But it was an evoca-

PRESS CONFERENCE

GEOFFREY HINTON

2024 NOBEL PRIZE IN PHYSICS

tive term designed to galvanize research in
an area that had once again fallen from

% UNIVERSITY OF (1{ )

iy favor. He knew the name was a good one

when, in the middle of the lecture, he said
everyone else was doing “shallow learn-

Ing,” and his audience let out a laugh. In the

https://www.youtube.com/watch?v=H7DgMFqgrONO

149

Genius Makers, Cade Metz 2021.

i



https://www.youtube.com/watch?v=H7DgMFqrON0

What is a layer?

Typically matrix multiplication! (But the function can take many forms™)

* Fully-connected layer

+ Convolution layer

 Pooling layer (e.g., Max-pooling)
* Non-linearity layer (e.g., RelLU)
* Attention layer

More on different types
of layers next week

*requirement to be differentiable if optimized with gradient descent algorithm variants

34



[Rosenblatt, 1957]

What is a neuron? Perceptrons

Most basic form of a neural network Sigmoid function:

1.25

Input
Weights

X1

Wi
X5 W)
X3 Output: c(w-x + b)

W3

Non-linearity Bias

W Linear combination

X4

35 of inputs



NEW NAVY DEVICE
LEARN > BY DOING

Psychologlst Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and be .con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704” com-
puter—Ilearned to differentiate

between right and left after|

fifty aftempts in the Navy's
demonstration for newsmen,,

The servxce said it would use
ple to bulld the first

fnmshed in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

ings, Perceptron will make mis-
takeg at first, but will grow
wiser as it gains experience, he
said,

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-

falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers,

Without Human Controls |
The Navy said the perceptron

would be the - first non-hving
mechanism “capable of receiv-

ing, recognizing and identifying
its surroundings without -any

msuman training or control.”
e “brain jesignec
remember images and informa-.
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .
Later Perceptrons will be able

lto recognize people and call out

‘their names and instantly trans-

late speech in one language to

speech or writing in another
language, it was predlcted

Mr. Rosenblatt said in prin-
cnple it would be possible to
build brains that could repro-
duce themselves on an assembly

line and which would be con-

scious of their existence,

|

1958 New York

Times...

In today’s demonstration, the
“704"” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing
In the first fifty trials, the

machine made no dlstmctlon be-:

tween them. It then started
registering a “Q"” for the left
squares and ‘“O"” for the right

squares.
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms. But he said the computer
had undergone a “self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain

has 10,000,000,000 responsive
cells, including 100,000,000 con-

nections with the eyes.
l

———— —

Slide credit: Lana Lazebnik



Linear regression:

Perceptron:

X§QY x%@
% %

MLP:

Input #1 —

Input #2 —=

Input #3 —~

Input #4 —=

Multi-Layer Perceptron (MLP)

|lnput Hidden Layer OLutput
aver ayer
- () 7
}:‘3’;‘}" () 7N
\’6:7‘\’ I>O—~ Output Y
RS _—
SR04
W; O/ W>
(Layer 1) (Layer 2)

Slide: R. Fe

rgus / S. Lazebnik
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Multi-Layer Perceptron (MLP)

MLP:

< : ) hy
Input Hidden L§ver Output
Layer Layer
@ ¢
\ 2
\ Input #1 —-

\ AN
@ & e I
, W INput #2 —= Q;/ \

4

) hg = 5 Ws;Xj + bs AN —*( >_'“ Output 'Y
@ { \\\§\ h4 ; Input #3 .?:i“ 7

> % .'" N
@ X
5 5

h=Wx+b; hl=ZWux]+bl
j

Linear / fully connected layer

= multiplication

Slide: R. Fergus / S. Lazebnik



Neural networks
for Computer Vision




Images are numbers

r-

What the computer sees

! ! i
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An Image Is Just a matrix of numbers [0,255]!
L.e., 1080x1080x3 for an RGB image

40 Slide credit: Alexander Amini



Analogy to the traditional visual recognition pipeline

I\r?zge/ > Hand-designed Trainable Object
Pilx:IZ feature extraction classifier Class

* Features are not learned (e.g., HOG, SIFT, Bag of Features)
* Trainable classifier is often generic (e.g., SYM, Random Forest)

41



Analogy to the traditional visual recognition pipeline

Image/
Video Trainable classifier

Pixels

Object
Class

* Features are learned “end-to-end” (i.e., pixels are input)

* “Feature hierarchy” all the way from pixels to classifier

* Each layer extracts features from the output of previous layer
* Train all layers jointly

42



Analogy to the traditional visual recognition pipeline

Image/

. Layer 1 Layer 2 Layer 3 Obiject
Video © — — —>
, Class
Pixels oW W W,
Simple
Classifier

* Features are learned “end-to-end” (i.e., pixels are input)

* “Feature hierarchy” all the way from pixels to classifier

* Each layer extracts features from the output of previous layer
* Train all layers jointly

43



Agenda:

- Machine learning concepts
- Basics of supervised learning
- Introduction to neural networks

- Training neural networks
- Loss

- Gradient descent and variants

- Learning rate
- Backpropagation
- Regularization

44



Training NNs




Recap: Basics of supervised learning

* 1 training data pairs (Z1,91), s (TnyYn) € X XY
* Learn a predictor/decision function f X — A

®* By minimizin
Y g sz)’ n

71N\

Loss  Model Input  Label

40



How can we define f?

* Using a set of parameters
* e.g., linear/polynomial regression, neural networks
» Directly using the training datq, i.e., non-parametric

* e.g., k-nearest neighbors



Loss Function

* Regression:
* L1 (absolute error) / L2 (squared error)
* Classification:

* Cross-entropy loss

48



Loss Function: Regression

Estimating a continuous value

* L1 (absolute error)

L=|fx, 0~

* L2 (squared error)

L=(f(X,0) -Y)

l

—

Prediction: Ground truth:
output of (label, annotation)
the network f
with parameters v,
given input X;

49



Loss Function: Classification

* Cross-entropy loss = softmax + negative log-likelihood

“““ .'~~‘
“" R, ," :0’ 1 qe 0“‘
loss(x, class) =i— log ( exp(x|class|) )

*

ZJ exp(x|] D

e 65

""" e> + et + e?

Fig: Micheleen Harris

50



Learning deep networks

 Non convex!

* Solution: go back to the simplest algorithms, variations around gradient descent,
and hope for the best.

* Note: every layer needs to be differentiable almost everywhere.

* It (mainly) works! (but requires a lot of know-how)



Example CNN architecture: AlexNet

I!Hnnnncass

X N &N

From left to right
decreasing spatial resolution
increasing feature dimensionality

“Fully-connected” layers (f6, f7, f8)
same as convolutional, but with 1 X 1 spatial resolution

contain most of the parameters

Slide: A. Vedaldi



Convolutional layers

Inunnncass

-

e — - —

' N

RelLU max

pool

linear non-linear oolin
filters activation P J

Each block c1, ¢z, ..., fs: convolution + ReLU + pooling.



Training a CNN

0 = {w,, w,, w,,..., wg} parameters /filters / weights / kernels...

0 = argmlnL 0| X, Y) where L(0) = : 21(9, X

0 — j
data sum over data points

loss / objective / error



Training a neural network
Given a (X, Y) pair:

® Forward pass: apply network to X to produce an output Y
e Evaluation: Compute loss function, i.e., £(Y,Y)
® Backward pass: compute the gradient with backprogation

® Update: Take a step in the direction of the gradient

Slide: A. Joulin

55



Hill Metaphor

e |f you are on a hill and you want to reach the bottom,

but can only see a foot around you, what do you do?

o We should just follow the slope of the hill and hope it gets us down
righte

e We will need to take a couple steps in the downward

M

direction, stop and re-evaluate our direction, then take

ASSTARTING POINT

a few more steps and so on

, \ LOCAL

MINIMA

Slide credit: J. Austin, A. Jain



Which direction is the steepest?

e Suppose the hill’s elevation is given by a vector function

e It's steepest descent is along the negative gradient vector
o — If we want to go down a hill, follow the negative gradient evaluated at our current

position
| AlSrARTING POINT
aaw
Vf(wl,wz’ * o o) — awz KL ) |
. \
Ciradient Vectors Shown at Several Points on the !y
o Surface of cos( sin(y) ' . ‘ LOCAL

MINIMA

Slide credit: J. Austin, A. Jain



Gradient descent

+ The objective function is an average over all N training data points:

|
() =— 2 ( )
+ Performing a gradient descent is iterating.

Xt BE(O,X,-, \/,)

Or+1 — 0 N ,- 90

+ Need to choose the learning rate policy «,
+ If the function is not convex, get stuck in a local minimum

+ Each step can be expensive to compute if the dataset is large

Convex case

-~ @racient

R
o
O
Global cost minimum
>
Parameter value
Image source
A Non-convex
-
3 Fats o
O Plateau
Local
Minima

>

Parameter value

Image source

58


https://winder.ai/blog/2017/img/gradient_descent_issues.svg
https://miro.medium.com/max/1400/1*WGHn1L4NveQ85nn3o7Dd2g.webp

Stochastic gradient descent

Instead of computing the gradient, compute an approximation:

Xt 8€(0,Xi, \/,)
N : 00

U

Orr1 — Ot

0¢(6, X(it) |y (i)

0t+1 —>9t—at 89

Can take advantage of large datasets, in particular infinite* datasets!

Introduce stochasticity, which might be good to get out of local minima in the non-convex case

59



Stochastic gradient descent with minibatch

Some variance is good, too much can be bad

Xt 86(9,)(,‘, \/,)
N2 o8

Nl

K
9t+1 — gt C;f(t Z 86(0’Xi’ \/’) (Wlth K << N)
=1

Orr1 — Ot

00

It's faster to compute several gradients in parallel ~ Why?

In practice, using batches as large as possible so that the network fits in the GPU memory (e.g.,
between 256 images, 10 videos, 1000 features, could be very different depending on the task,
network, GPU hardware)

60



Summary: Stochastic Gradient Descent (SGD)

The objective function is an average over all N training data points:

Xt 68(9, X,‘, Y,)
N I, 00

Orr1 — 04

Key idea: approximate the gradient with 1 random datapoint:

90(0, X (i), y (i)
06

6t+1 —> gt — (¢t

Pick K random points instead of picking 1 (with K<< N):

Ut A BE(O,X,', Y,)

K < 00
=1

Ory1 — 04

Slide credit: Andrea Vedaldi

(gradient descent)

(stochastic gradient descent)

(stochastic gradient descent
with mini-batches)

=> commonly used

61



Stochastic gradient descent (SGD)

Details:
Epochs: all points are visited sequentially, but random order within epoch
Minibatch size: set to largest value permitted by the hardware
Validation: evaluate L(@) on a held-out validation set to diagnose objective decrease
Learning rate: e.g., decreased tenfold once the objective L(6 ) stops decreasing, cosine LR scheduler...

SGD with momentum: the gradient estimate is smoothed by using a moving average to encourage
directions that are coherent:

M = yMi_1 + ngt
9t+1 — 9t — Mt



Optimization

e Can we do better than vanilla gradient descent? Yes

vanilla update rule for reference

9t_|_1 — gt — AV@L

(6, data)



Beyond vanilla SGD



Not all direction are equal




Not all direction are equal

U=

We want to go fast in some directions, slow in others




Vectorized SGD: one step size per dimension

Scalar stepsize:

Ory1i =0t — a8t

Vector stepsize:

~
9t—|—1,i — Ht,i — at,agt,i

0,, it dimension of the parameters at step t (scalar)



Vectorized stepsize example: Adagrad

*Some parameters might have more gradient signal than others.
*Adapt the learning rate to how much signal there is for each gradient parameter.

Orr1i=0:;— 77. 8t

* “No need” to set a learning rate schedule

* G, is the accumulation of the squared gradients
 Squared norm avoids exploding or vanishing gradient
* € avoids numerical issues.



Use previous gradients

Previous gradients are not bad estimates of current
curvature



Example: momentum

Gradient estimate is smoothed by using a moving average to encourage directions that are coherent:

My = yMi_1 + 18+
Or+1 = 0 — My

® ~ controls the Inertia
e M; 1s almost a moving average
® Typically, v =0.9 or 0.99



Example: momentum



Vectorized stepsize example: RMSProp

e Instead of keeping a weighted average of gradients, keep a weighted
average of squared gradient components
¢ Similar idea to AdaGrad, but running avg instead of sum over all
samples for the normalization
e Similar to ADAM, but no momentum



Vectorized stepsize example: RMSProp

e Case 1: The gradients have been really
small in the past

o Moving average of squared gradients will be even tinier
o The square root of this moving average will be a really
small number, and dividing by it should increase the

size of the final gradient update

e Case 2: Our gradients have been really big
in the past

o Moving average of squared gradients will be huge
o The square root of this moving average will be a really
large number, and dividing by it should decrease the

size of the final update

Takeaway: this helps combat the issue
that gradients can be varying in size,
causing us to either get stuck from
small gradients or blow past our mark
with large gradients. RMSProp makes
sure our steps never get too big or too
small!

Slide credit: J. Austin, H. Jalan, A. Jain



Momentum + vectorized stepsize = ADAM

*Combination of momentum and RMSProp
*Keep 2 moving averages: 1 for the gradients and 1 for the squared gradients

1
M; ;i = 1 _ gt (BMi—1.; + (1 — B)ge.i)
1
Gei = 7 (7Ge—1,i + (1 - )&t i)
—
U
Ori1.i =0 M |
t+1, t, \/Gt,i s t,
® M;; = moving average of gradients, as in momentum.
® (G;; = moving average of squared gradients, as in Adagrad.

® - avolds numerical iIssues



Beyond SGD Summary

*Many other algorithms. Good overview hitp://ruder.io/optimizing-gradient-descent/

*AdaGrad: Some parameters might have more gradient signal than others. Adapt the learning rate to how much
signal there is for each gradient parameter.

it t
et—l—l,l N et,’b \/Nt’Z Gtﬂ Nt,i — £ Gt,i

*‘RMSProp: Similar idea to AdaGrad, but use running average instead of sum over all samples for the normalization

Yt
(975_|_1,@' < et,i \/N Gt,z’ Nt,i — mNt—l,i =+ (1 — m)G%z
£ |

*ADAM: Combination of momentum and RMSProp, currently the most popular optimizer for NNs, along with AdamW
(improved version where the weight decay is performed differently)

*Notes:

«all these optimizers are coded in standard deep learning libraries
*lt’s hard to keep good intuitions with complex optimizer, if things don’t work/you are lost, go back to batch SGD

Slide: M. Aubry



Learning rate




Learning rate policy

* There is no standard policy with NNs.

* The best is usually to pick a LR as high as possible without having the algorithm diverge, keep it constant
until convergence, then decrease it (and iterate that until there is no difference). Other more complex
approaches are also widely used such as sinusoidal LR schedules, linear warmup etc.

* LR schedules even help with adaptive optimizers (e.g., AdaGrad)

 There are no guarantees with NNs, looking at training curves is cruciall

Small Learning Rate Large Learning Rate

Loss | Loss

Yoy / . N >
Value of weight Value of weight

mage source

Slide: M. Aubry


https://static.javatpoint.com/tutorial/machine-learning/images/gradient-descent-in-machine-learning3.png

J(w)

Large learning rate: Overshooting.
Divergence.

Small learning rate: Many
iterations until convergence and
trapping in local minima.



Fixed learning rate

e Start with a large stepsize
® |f you diverge or oscillate, reduce it
® |f progress Is slow but consistent, increase it

® Then keep It constant



Linear decay, step decay

® Linear decay: a; = a/(b+t)
® Divide learning rate by a factor when loss on validation set
does not decrease

® Fix number of iterations T and set learning rate accordingly:
ar=ao(T —t)/T

Step Decay Learning Rate Scheduler

LR e

0.8f

2 0.6
©

9 0.4}

0.2} \

0.0

0 20 40 60 80 100



Cosine scheduler

e Decay with a cosine function

Ir,
1.00

0 ;0 - 9 R T R R R R R R R R R R R R R R R R R R R R R I T I T R I I I

0.49} -

1T 7. 1) [ W— |
0.24 - - - R .. . =~ TR RO,

0.01 >
epoch

Loshchilov & Hutter, SGDR: Stochastic Gradient Descent with Warm Restarts, ICLR 2017



Linear “warmup”

* Large LR initially => divergence.
e A sufficiently small LR prevents divergence in the beginning. But, this means that progress is slow.

e A rather simple fix for this dilemma is to use a warmup period during which the LR increases to its initial maximum.

scheduler = CosineScheduler (20, warmup_steps=5, base 1r=0.3, final 1r=0.01)
d2l.plot(torch.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])

0.3 -

0.2 -

0.1 -

0.0 -

0 10 20 30

Loshchilov & Hutter, SGDR: Stochastic Gradient Descent with Warm Restarts, ICLR 2017 Figure from https://d2l.ai/chapter_optimization/Ir-scheduler.html|



Initial learning rate

» For logistic regression, a good initialization is in the range

{0.01, 0.05, 0.1, 0.3, 0.5, 1} Magic (!) 0.03

* Rule of thumb: pick the LR that is “just below” the one where the network diverges.

* If you start seeing values like 1e-8, there might be something else to change, initialization, normalization etc.
** Multi4asking (multiple loss terms) is tricky to set a single learning rate for all tasks.
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Computing the gradients

* Deep neural networks include a lot of operations, so it’s important to compute the gradient efficiently.
* It helps to leverage GPUs by computing the gradient for several inputs, performing batch SGD

*  While in theory, we just have the gradients of composite functions and for that apply chain rule, there
is an efficient way to do it, called back-propagation.

Slide: M. Aubry



Backpropagation

Computing the gradients: While in theory, we just have the gradients of composite functions and for that
apply chain rule, there is an efficient way to do it, called backpropagation.

Y;: bike
g l
C3 C4 C5 fe

2\
0‘.“ Ci [pC2 f7 fs -»Ioss

—

X;:image I
Wi W2 W3 W4 W5 W6 W7 W8
forward }§
backward
derror derror derror derror derror derror derror derror
aw+ aw?2 aws aw4 aws dwe awz aws

Slide credit: Andrea Vedaldi [Derivatives, Backpropagation, and Vectorization] http://cs231n.stanford.edu/handouts/derivatives.pdf 86



http://cs231n.stanford.edu/handouts/derivatives.pdf

Chain rule: scalar version

X0 X1 Xn-1 Xn
O f1 (U fo e fn-1 (U fn (U

Slide credit: Andrea Vedaldi
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Chain rule: scalar version

A composition of n functions

Xn=( f, e fh.i1 © ... © f> O fi ) (o)
} ' ' '
dx, df, df,_1 dfs dfy
— X X .. X —= X —
dxqo dx,_1 dx,_» axy dxp

Derivative obtained using the chain rule

Slide credit: Andrea Vedaldi



Backpropagation

Derivatives:
® Scalar case
e Gradient: Vector in, Scalar out
e Jacobian: Vector in, Vector out

e Generalized Jacobian: Tensor in, Tensor out

Impractical to store in memory

e.g., for a fully connected layer that takes as input a minibatch of N vectors, each dimension D,
and produces a minibatch of N vectors, each dimension M:

=> Jacobian matrix (N x M) x (N x D)

=> 68 billion numbers (256GB) if N=64, M=D=4096

Chain rule: start from the loss which is a scalar, no explicit forming of the entire Jacobian

[Derivatives, Backpropagation, and Vectorization] http://cs231n.stanford.edu/handouts/derivatives.pdf
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Computational Graphs

e Say we have some function e (c, d), but c and d / \
are functions of other variables. We have c (a, Db)

and d (b) /' '\ /'
e We can write how these functions depend on each
other as a tree @ @

e We call this a computational graph because it
tells us how to compute the final value e from leaf

nodes (inputs) a and b
e Each node in this tree is a function of the

incoming nodes

Slide credit: J. Austin, H. Jalan, A. Jain



Computational Graphs and the Chain Rule

e |f we want to calculate derivatives of an / \
input with respect to the output, we need to

use the multivariable chain rule /

o Sum over all unique paths from the input to the output
o For each path, multiply all partial derivatives of each

output node with respect to the corresponding input node

e 6686_'_ Oe Od
ob OcOb Od Ob

Slide credit: J. Austin, H. Jalan, A. Jain



Backpropagation

e Here is an example of a computational graph of a toy neural network’s MSE
loss on a single training example

o This neural network has only one neuron per layer, making inputs and outputs scalars

e Our objective with gradient descent is to calculate the partial
derivative of the output with respect to wl, w2, w3, b1, b2 and

b3... but we don’t want to do é6x the computation... how can we do this?
41 A1

0-@-0-G@-0:-C-0-0

Slide credit: J. Austin, H. Jalan, A. Jain




Backpropagation

e We can write out the chain rule for all these, and see if there is anywhere
that we can optimize and save ourselves some compute
e Note: We will be writing out a lot of partial derivatives... each one is

being evaluated for under the current training example and the

current parameters

©- @*@*@*@ *@*‘*0

Slide credit: J. Austin, H. Jalan, A. Jain




e Inthis example, X, y, b1, b2, b3, wl, w2, w3 are scalars

Side note: on the forward pass, we calculate and save things like the
partial of z_3 with respect to a_3, so that we can use it here later

OL 0L dzz 0L  0LJz30a20z 0L  OL 0z30a902z90a1 0z
Ows  Oz0ws Ows  0230a90200ws Owy  Oz30a90zo Oay Oz Owy

0*/@*@;@*@;@*’*0
0 0 0 O 00

Scalar Computation Graph Example

Slide credit: J. Austin, H. Jalan, A. Jain



e Inthis example, X, y, b1, b2, b3, wl, w2, w3 are scalars

We can see that we’ve calculated these values multiple times

0L O0L|0z3 OL B 0L Dz30a9 020 OL B 0L Oz30a9020 0ay 0z

Ows  |0z90ws Owo 023009 0290ws Owy  |0z30a9 0z00ay Oz Owy
0-CD-0-@D-Q-@D-0-0
©0 00 0 00

Scalar Computation Graph Example

Slide credit: J. Austin, H. Jalan, A. Jain



Backpropagation oL

Ows

e Rather than calculating these values again °"/® - @~

with repeated multiplication, let’s just save

and reuse them
o This saves a lot of redundant calculations for

deep neural networks

e We will simply work from the end of the
network to the front, caching values
that we need as we go along

e Note: All the partials here are being
evaluated for the current data and

parameters...

oL

023

Ozg  OL |I@L !823 OadO0zp  OL _|9L Oz30ag|0z0 day Oz1

Ows Ows 0231002 0z90ws Owy 023009020 |8a1 0z1 Owq

D-0-D-0-0
t A N

/”

T
o0 00 0 00

1)
2)

3)

First we calculate the update for W3,
caching the red

Then we use the red to calculate the blue
value before calculating the update for W2
This pattern of using the last computation to
save redundant multiplications on the next

update continues

Slide credit: J. Austin, H. Jalan, A. Jain



Backpropagation: Takeaways

e The thing you need to take away from backprop is that it is a fast
method of getting all of the partial derivatives needed for

gradient descent, removing redundant (matrix) multiplications

o  We do this by working from the end of the computational graph to the front, caching any
computation used in calculating the previous partial derivatives

o By working from the end of the graph to the front, we can handle much more complex
computational graphs quickly and efficiently

e Modern auto-differentiation software like pytorch will keep track of the
graph and calculate our gradients with backprop

o It can handle arbitrarily large computational graphs

Slide credit: J. Austin, H. Jalan, A. Jain



Vanishing / exploding gradients

Multiplying too many small/big values.

SOI UtiO n S : y(z) = max(0,z) T LEEEZL%W
mgn . ] . //
* Initialization techniques ECakna
: 5| 4
* Use RelLU (non saturating) dREiEEEE P i

* Use skip connections in the network

P— - - - . . | | ’ 5 ’ - * ’ * ’ : hn® Sd hd eed ed & » ’ 5 ’ ’ - - . . ’ 5 ’ ’ . ’ ’ ’ 5 ! ’ —_—

* Use batch normalization
* Use gradient clipping
 Use warmup LR scheduler

Slide: M. Aubry



Batch normalization

* A layer to try avoiding vanishing or exploding signal,

* ldea: normalize the data everywhere in the network using estimates of the mean/variance

BN(X,B(xnqu-) — Ckz - | 6
O

. Q,p

+ 9 are estimated over a mini-batch, or updated using a momentum

are learnt, [ty 0 are estimated, all have the same dimension as &

 Batch-norms are typically place just before non-linearities

* Careful: often source of bugs!

» Different behavior during training and testing: (1, 0 are estimated on one batch during training, stable
estimates are estimated with momentum and fixed during test (network in train/test modes)

* Requires large and diverse batches

Slide: M. Aubry



Gradient clipping

Avoid gradient explosion by clipping the value of gradient
below some norm:

G
G|

G = min(y, [|G]) i

with u > 0



Warm-up

« Most gradient explosion happens at the beginning of training
« Because matrices are poorly set and learning rates are large

e Solution: start with small learning and increase it



Warm-up

K L
Learning rate scheduler (a;);

® Set a target learning rate «

L
ar = min(l, — )«

K

where K I1s the "warm-up’ parameter



“Problems” with training

» Undertitting:
* making poor predictions on the training (and test) data
* not enough parameters to express complexity in data

* Overtfitting:
* too many parameters match too well complexity in training
data

* not generalizing to unseen datq, i.e., high performance on
training set, low on test set
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Example: polynomial regression of degree M

M=0

M=1
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“Typical” machine learning setup

Data split into three sets

Validation set Test set

(Sometimes referred as

Training set

“development” set)

\4

Allowed to make statistics, learn models, Not allowed to “see”
tune hyperparameters

* Learn models on the training set

e Evaluate on the validation set many times (run experiments to find good hyperparameters,
e.g., number of epochs, learning rate, batch size...)

¢ (Optional: Learn the final model on the combination of training and validation sets)

* Evaluate on the test set “once”
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https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/author/jasonb/

How to avoid overfitting?

Data augmentation
Deep networks have many parameters. Original  Rotation Flip Scaling  Brightness

Some regularization techniques: y W "
* Smaller network, i.e., less parameters — Ji s a
i Image source
® Data augmentation
A . " .
® Suboptimize, i.e., “early stopping ‘

* Force redundancy in hidden units, i.e., “dropout”

* Penalize parameter norms, i.e., “weight decay” "l s
| :
L2 penalty: N
encourages the norm of S gt
the parameters to be low — 1
/ i 0 = 0, — 0" —a il
L(6 +—|9| +1 — Uy —&—= — A AU;

\_'_I —r—
gradient

107


https://www.baeldung.com/wp-content/uploads/sites/4/2022/08/AugmentData.png

Weight regularization

3 complementary approaches:
e Regularizing the weights with weight decay
e Initialization
« Normalization of activations



Why Is weight regularization important?

« Many networks produce same results
o Examples: permutations of weights, invariant to multiplication...

« We can reduce space of exploration to smaller set of networks

- Faster convergence



Weight decay

® Apply a L> regularization on the parameters

L2 penalty:
encourages the norm of
the parameters to be low

A : 0 0 oL 10
L(6’)+5|\6’\|2 +1 t_aa_et_a t

\_'_I Y
gradient

® ] > 0 decreases during training with the learning rate

® Different from standard regularizartion where 4 > 0 is fixed.



Weight Initialization

® |f two units are equal, they stay equal
® Waste of capacity

® Random initialization breaks symmetry



Weight Initialization

15

U | | 1 |
2.0 1.5 2.0 0.5 2.C 0.5 1.0 1.5 2.0

Sigmoid Rectified linear Unit
® Many nonlinearities have regions with 0 norm gradients

® |nitialization must avoid saturated areas

® Alernatively use nonlinearities with no saturation:

Leaky ReLU = RelLU(x) + ax, with a > 0.



Fan-in initialization

® Fan-in: number of inputs used to compute a hidden units
® |arge fan-in implies larger changes in hidden variables

® Need smaller initialization

* Typically, weights =~ 1/+/fan-in



Data normalization (whitening)

® Update of a layer is proportional to its input

® Example:
® Assume X1 — 100 and XQ = 101
® Vi1 =+1and V¥, = -1
® Mean of updates is small (x —0.5) but each update is huge
(< 100)

® (Center data is important!

* Centering is transforming x; into =+

/



Intermediate normalization

Example: batch normalization (batchnorm)

* Centering is transforming x; into =—*

/

® For the upper layers, y; and o; change over time

® We shall learn them and update the parameters accordingly



Recap: Batch normalization

Why “batch”?
0; = BNa,g(h.,;) Disadvantages?
1 b
KB b Z hi
i=1 Compute batch
b . o
1 statistics
0f 5 Z(hz — p1B)°
2=1
h; < i — £ Normalize hidden  h;
Vog te state
0; < ah; + 3 Shift the normalized hidden

a and 3 are learned over time.



Summary of optimization

Standard optimization:
« ADAM (or AdamW)

e Clipping

e cosSine scheduler

e warm-up

e init based on fan-in

o grid search over initial learning rate and weight decay



Look at your results
®

* When you train a network, you should try to really understand what is happening:
* Train/val/test sets are important
* Look at loss and performance on train/val sets during training
* Choose LR, compare networks, try ditferent initialization (random seeds)
* Try to overfit on a subset of the training set first

* Very important: Look at your data and results (e.g., visualize predictions) on
training and testing data.

More tips at Andrej Karpathy blog:
A Recipe for Training Neural Networks https://karpathy.qgithub.io/2019/04/25/recipe/
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Practical problems

* Data loading:

* Loading “on the fly”: needed for big datasets, use efficient database
structure, fast disk access, e.g., SSD

* Loading to RAM: possible for smaller datasets, or pre-computed features
» Speed: use GPUs, parallel data loading
* Network size: get lots of memory on your GPU or/and use several GPUs

Good news: you don’t have to do all of it!
Many ready-to-use and efficient frameworks are available (e.g., Pytorch)

Slide: M. Aubry
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deep learning frameworks

I c ka g es Al & Images 1) Videos (& News [ Books i More Tools
100.0 S 49 seconds)

. P)’TO I'Ch (P)’fh on) From sources across the web
Mfcrch.org[ fensorFlow ' Caff Cafle

>/T PyTorch X T Apache MxNet Microsoft Cognitive Toolk
’ Te n so r F I OW ( PYII. h 0 n ) B G O o g I e 1,::' Deeplearningd Torch Chainer
https://www.tensorflow.or |
P U gL ) = Theano H,00 H20 O l\ Onnx
2 C
¢ LU CI To rc h I::} Horovaod Vv eea Scikit-learn v /5\, i!N Apache SINGA
hitp://torch.ch/ . ig1]1 oo J casoos

- Catfte (C++, pycafte, matcattfe)
hitp://cafte.berkeleyvision.org/

+ MatConvNet (Matlab)

hitp://www.vlfeat.org/matconvnet/
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http://pytorch.org/
https://www.tensorflow.org/
http://torch.ch/
http://torch.ch/
http://torch.ch/
http://caffe.berkeleyvision.org/
http://www.vlfeat.org/matconvnet/

self.convl = nn.Conv2ad(l, 1@, kernel_size=5)

self.convZz = nn.Conv2d({19, 20, kemel size=5)

, class Netinn.Module):
Let’s look at Logirergriors
super(Net, self). init ()
some code
: : relf.fc1 = an.Linear(320, 50) | * Key part of
(more in Assignment 2) serr.1c2 = an-vinear(se, 20
pytorch code

def forward(self, x):
X = F.relu(F.max pool2d(self.convlix), 2)) f r CNN I rn°n
X F.relu(F.max pool2d(self.conv2 dropi(self.conv2i(x)), 2)) 0 eq I g
X x.view(-1, 3290)
x = F.relu(self.fcl(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)

* The key objects are

1T args.cuda:
model.cudal()

optim.SGD(model.parameters{), lr=args.lr, momentum=args.momentum)

def train(epoch):

- model,
- optimizer,
nodel.train()

- dCI'l'CIIOCIder, for batch idx, (data, target) -'

1f args.cuda:
Ioss data, target data.cudal{), target.cudal)
[ )

optimizer.zero_grad()
output = model(data)
F.nlLl_loss{output, target)

0ss.backward()
optimizer.step()
for epoch in range(l, args.epochs + 1):
train(epoch) 121
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