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Current: Unsupervised image analysis, applications to historical data or Earth imagery

Past: Deep 3D model generation/analysis. 

A few words about my research
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3D category recognition from rendered views

Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. ICCV 2015
Multi-view Convolutional Neural Networks for 3D Shape Recognition.



Semantic segmentation from rendered views

A. Boulch, B. L. Saux, and N. Audebert. Unstructured point cloud semantic labeling using deep segmentation networks. 
In Eurographics Workshop on 3D Object Retrieval 2017
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3D recognition from voxels

Wu, Z., Song, S., Khosla, A., Tang, X., & Xiao, J. CVPR 2015
3d shapenets: A deep representation for volumetric shapes.



OctNet

• Voxel representation tend to be
costly:
-> tree based representation

Riegler, G., Osman Ulusoy, A., & Geiger, A. 
Octnet: Learning deep 3d representations at high resolutions. 
CVPR 2017
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3D recognition from point clouds

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation,
CR Qi, H Su, K Mo, LJ Guibas, CVPR 2017
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PointNet

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation,
CR Qi, H Su, K Mo, LJ Guibas, CVPR 2017



PointNet++

Qi, C. R., Yi, L., Su, H., & Guibas, L. J. 
Pointnet++: Deep hierarchical feature learning on point sets in a metric space. NeurIPS 2017



Superpoint Graphs

Landrieu, L., & Simonovsky, M. 
Large-scale point cloud semantic 
segmentation with superpoint graphs
CVPR 2018



The GRU take as input the previous hidden state and a message computed 
as a weighted average of its neighbors hidden states.
The weights are computed from a small number of attributes using an MLP

M. Simonovsky and N. Komodakis. Dynamic edgeconditioned filters in convolutional neural 
networks on graphs. In CVPR, 2017



Key issue: 3D representation

• 2D views / Depth maps

• Voxels

• Points

• Meshes

• Parametric surface

• Implicit surface

• ”Procedural”



Outline: Deep learning and 3D data

Important milestones:
1. Classification and Segmentation

2. Matching / Alignment

3. Generation and single view reconstruction

Recent works I am excited about:
4. Structured generation

5. Unsupervised single view reconstruction

Learning with synthetic data



Non-rigid registration

• Evaluation?
• Synthetic data: 

SHREC / TOSCA datasets 



Non-rigid registration

• Evaluation?
• Synthetic data: 

SHREC / TOSCA datasets 

• Real data: 
FAUST dataset



3D local descriptors with spectral CNNs

Geodesic convolutional neural networks on riemannian manifolds,
J. Masci, D. Boscaini, M. Bronstein, P. Vandergheynst, ICCV workshops 2015



3D local descriptors with spectral CNNs

Geodesic convolutional neural networks on riemannian manifolds,
J. Masci, D. Boscaini, M. Bronstein, P. Vandergheynst, ICCV workshops 2015



Correspondences through Deformation

26

Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., & Aubry, M. 
3d-coded: 3d correspondences by deep deformation ECCV 2018
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Template

Correspondences through Deformation
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Nearest
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Correspondences through Deformation
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Correspondence 
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Correspondences through Deformation
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Nearest
Neighbor

Correspondence 
via template

Nearest
Neighbor

Correspondences through Deformation



Latent shape 
representation

MLP
x
y
z

Generated
3D point

Sampled 
3D point

Template

Key idea: deformation

MLP= learned family of parametric deformations
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PointNet



Sampled 
3D point

Latent shape 
representation

MLP

Generated
3D point

Key idea: deformation

The reconstructed shape is in dense 
correspondence with the template by design.
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PointNet



Losses

• Let’s consider a source point cloud
and a target point cloud 

• Supervised case:

• Unsupervised case:
Chamfer distance:

Earth mover distance:
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Results
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The nearest neighbors are likely to be poor

Results
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Input 
Point cloud

Loss
PointNet

MLP
x
y
z

Refinement.

MLP= learned family of parametric deformations
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Refinement. Optimized with gradient descent

Loss

MLP
x
y
z

Latent shape 
space

Generic idea :
test time optimization
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Input Shape Deformed Template Optimized reconstruction



w/o template + w/ cycle consistency

T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, M. Aubry, Unsupervised cycle-consistent deformation for shape matching, SGP 2019
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Voxels

Choy, C. B., Xu, D., Gwak, J., Chen, K., & Savarese, S. 
3D-R2N2: A unified approach for single and multi-view 3d object reconstruction. ECCV 2016



Points

MLP

Generated
Point cloud

Fan, H., Su, H., & Guibas, L. J. A point set generation network for 3d object reconstruction from a single image, CVPR 2017

Latent shape 
representation
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Points 

MLP

Input 
Point cloud

Fan, H., Su, H., & Guibas, L. J. A point set generation network for 3d object reconstruction from a single image, CVPR 2017

Generated
Point cloud

PointNet
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Points

MLP

Fan, H., Su, H., & Guibas, L. J. A point set generation network for 3d object reconstruction from a single image, CVPR 2017

Generated
Point cloud

CNN

Input 
Image
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Sampled 
2D point
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Parametric surface: Deform a unit square

Latent shape 
representation

MLP
x
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Sampled 
2D point
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Parametric surface: Deform a unit square

Latent shape 
representation

MLP
x
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Generated
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Generated
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Latent shape 
representation
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y

MLP 1

MLP 2

MLP 3

Learnt simply by sampling many points and minimizing Chamfer distance
T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, M. Aubry, AtlasNet: A papier-mâché approach to learning 3d surface generation, CVPR. 2018



2D point

3D point

Latent shape 
representation

x
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Parametric surface

MLPy



3D point 

Occupancy

Latent shape 
representation

x

55

z
f(x)

Parametric volume [Mescheder2019, Park2019, Chen2019]

MLPy

Park, J. J., Florence, P., Straub, J., Newcombe, R., & Lovegrove, S.
Deepsdf: Learning continuous signed distance functions for shape representation
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., & Geiger, A. 
Occupancy networks: Learning 3d reconstruction in function space.
Chen, Z., & Zhang, H. 
Learning implicit fields for generative shape modeling. 



Voxels Point Clouds Mesh

Implicit

Park et al. ; Chen et al. 
Mescheder et al. 

Fan et al. 

2016 2017 2018 2019

Groueix et al. Choy et al. 

Summary: 3D shape representations for deep generation

Slide from Thibault Groueix



Parametric scene / Nerf [Mildenhall20]

Input: a set of calibrated images
Output: rendering from any viewpoint

(from a scene model)



Parametric scene / Nerf [Mildenhall20]

More in details
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Learning Shape Abstractions by Assembling Volumetric 
Primitives, Shubham Tulsiani , Hao Su, Leonidas J. Guibas, 
Alexei A. Efros, Jitendra Malik, CVPR 2017

Superquadrics Revisited: Learning 3D Shape Parsing 
beyond Cuboids, Despoina Paschalidou, Ali Osman 
Ulusoy, Andreas Geiger, CVPR 2018

Learning to compose primitives 



Latent shape 
representation
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MLP 1

MLP 2

AtlasNet



Latent shape 
representation
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MLP 1

MLP 2

Learning elementary structures:
Point Learning (AtlasNet v2)

Learning elementary structures for 3D shape generation and matching 
T. Deprelle, T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, M. Aubry
NeurIPS 2019



Latent shape 
representation
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MLP 1

MLP 2

Learning elementary structures:
Point Learning (AtlasNet v2)
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MLP 1

MLP 2

Learning elementary structures

A1

A2

Latent shape 
representation



Input Learned elementary structures Reconstructions

Results on Shapenet planes

67



Learnable Earth Parser

+ losses derived from a probabilistic scene model, developped in the paper

Learnable Earth Parser: Discovering 3D Prototypes in Aerial Scans R. Loiseau, E. Vincent, M. Aubry, L. Landrieu CVPR 2024



Data: LidarHD



Semantic segmentation results



Instance segmenation results
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Structured generation for image analysis
Unsupervised Layered Image Decomposition into Object Prototypes, T. Monnier, E. Vincent, J. Ponce, M. Aubry

ICCV 2021



Multi-object discovery results
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Discovered sprites



Object discovery on Instagram

79



Text lines, HTR and paleography

The Learnable Typewriter A Generative Approach to Text Line Analysis
Y. Siglidis, N. Gonthier, J. Gaubil, T. Monnier, M. Aubry, ICDAR 2024 (IAPR best paper award)



Differentiable Blocks World

82Differentiable Blocks World: Qualitative 3D Decomposition by Rendering Primitives 
T. Monnier, J. Austin, A. Kanazawa, A. Efros, M. Aubry NeurIPS 2023



Approach

84

Optimization 
evolution

View synthesis



Optimization process
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Qualitative results

87



Applications

88



Gaussian splatting (Kerbl et al. 2023)
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Motivation

92

Goal → learn w/o supervision to reconstruct 3D objects from single views

Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency 
T. Monnier, M. Fisher, A. Efros, M. Aubry ECCV 2022



Single-View Reconstruction (SVR)

93

Our work

→ w/o hypotheses of prior works

→ diverse shapes (ShapeNet)

→ high-quality results on real images

Disclaimer

→ we still use categorical images

Current trend → remove 

supervision from SVR pipelines 

Why? → to learn 3D from raw 

2D images « for free »



Our approach

94

Structured autoencoding into explicit

factors: shape, texture, pose, background

(analysis-by-synthesis fashion)

We leverage the consistency across different 

instances to remove supervision & priors

1 2



Structured autoencoding
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Shape 

deformation
Texturing

Affine 

transformation

Rendering with 

background



Structured autoencoding - issue

Task is highly unconstrained w/o supervision & priors!

96

1. Degenerate background 2. Degenerate 3D model

Two data-driven approaches leveraging cross-instance consistency: 

→ progressive conditioning (training procedure)

→ Neighbor reconstruction (training loss)



Progressive conditioning (PC)

Cross-instance consistency
→ instances with similar shapes and textures exist!

97

Progressive conditioning

→ gradually specialize from category to instances

→ progressively allow more variability by       

     increasing the latent space dimension

→  curriculum learning spirit



Neighbor reconstruction

Neighbor reconstruction loss
→ force consistency among instances
w/ similar shapes & textures

→ swapping characteritics should 
give similar reconstructions

98

→ like a multi-view supervision 

w/o having access to multi-views



Results - CompCars
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Ablation study

100

Input Full model w/o PC w/o



Results - ShapeNet
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Results - Motorbikes

102



Free by-products – silhouettes & correspondences

103
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Learning from synthetic data

• Very appealing: 
• Annotations (almost) free 

• Can include things that are very hard to annotate (e.g. illumination, dense labels)

• Can simulate rare situation (e.g. accidents)

• Challenge: domain gap - will the model trained on synthetic data work as 
well on real data?

• Strategies:
• Realistic data

• Domain adaptation

• Domain randomization 

• Other 
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Domain randomization: predict 2D position

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. 
Domain randomization for transferring deep neural networks from simulation to the real world
IROS 2017



Domain randomization: Learning relative position

Virtual Training for a Real Application: Accurate Object-Robot Relative Localization without Calibration 
V. Loing, R. Marlet, M. Aubry, IJCV 2018



Domain randomization
S. Zagoruyko, Y. Labbé, I. Kalevatykh, I. Laptev, J. Carpentier, M. Aubry and J. Sivic 

RSS workshop 2019, ArXiv

Vision part extending

Virtual training for a real application: Accurate object-robot relative localization without calibration
V. Loing, R. Marlet, Mathieu AUbry

IJCV 2018



• Single view similar to deepIM (see later) with randomized training data

CosyPose:
Multi-views, multi-object

Multi-view multi-object 6D pose estimation via robust scene consistency optimization
Y. Labbé, J. Carpentier, M. Aubry, J.Sivic, ECCV 2020



CosyPose:
Multi-views, multi-object

Multi-view multi-object 6D pose estimation via robust scene consistency optimization
Y. Labbé, J. Carpentier, M. Aubry, J.Sivic, ECCV 2020



Extending the render and compare approach of
Multi-view multi-object 6D pose estimation via robust scene consistency optimization

Y. Labbé, J. Carpentier, M. Aubry, J.Sivic, ECCV 2020
to articulated objects



Domain randomization: Learning to act

Learning strategies:

• Imitation

• RL



RL from synthetic data to real world

Sadeghi, F., & Levine, S. (2016). Cad2rl: Real single-image flight without a single real image.



Genie 2
Realism and diversity, based on diffusion, aimed at training agents

Last week, Google : https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/



Navigation World Models

Bar, A., Zhou, G., Tran, D., Darrell, T., & LeCun, Y. 
Navigation World Models. arXiv last week, Meta



Domain randomization: Optical flow

Flownet: Learning optical flow with convolutional networks 
A Dosovitskiy et al., ICCV 2015



For historical data

• Illustration detection

• Copy retrieval

• Diagrams vectorization

• Text recognition (upcoming) 

Learning Co-segmentation by Segment Swapping for Retrieval and Discovery
X. Shen, A. Efros, A. Joulin, M. Aubry, CVPR 2022 workshops

docExtractor: An off-the-shelf historical document element extraction 
T. Monnier, M. Aubry, ICFHR 2020

Historical Astronomical Diagrams Decomposition in Geometric Primitives 
S. Kalleli, S. Trigg, S. Albouy, M. Husson, M Aubry, ICDAR 2024

General Detection-based Text Line Recognition
R. Baena, S. Kalleli, M. Aubry, NeurIPS 2024



Synthetic data





Domain randomization: Co-segmentation

• Goal: identify reccurent objects and their correspondences

+

Learning Co-segmentation by Segment Swapping for Retrieval and Discovery
Xi Shen, Alexei Efros, Armand Joulin, Mathieu Aubry, CVPRw 2022



Architecture

Learning Co-segmentation by Segment Swapping for Retrieval and Discovery
Xi Shen, Alexei Efros, Armand Joulin, Mathieu Aubry, CVPRw 2022



Matching results

Learning Co-segmentation by Segment Swapping for Retrieval and Discovery
Xi Shen, Alexei Efros, Armand Joulin, Mathieu Aubry, CVPRw 2022



Goes beyond artwork analysis
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Exemplar CNN

Idea: 
1. learn feature with fake classes 
based on 1 image + augmentations 

2. Use the features for another task

Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks 
Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springenberg, Martin Riedmiller, Thomas Brox
NIPS 2014

This type of extreme data augmentation is important in most self-supervised 
approaches
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Category detection

X. Peng, B. Sun, K. Ali, K. Saenko, ICCV 2015
Learning Deep Object Detectors from 3D Models

Pepik, B., Benenson, R., Ritschel, T., & Schiele, B. GCPR 2015 
What Is Holding Back Convnets for Detection?. 



Importance of realism for category detection

X. Peng, B. Sun, K. Ali, K. Saenko, ICCV 2015
Learning Deep Object Detectors from 3D Models

Pepik, B., Benenson, R., Ritschel, T., & Schiele, B. GCPR 2015 



(1D) Pose estimation

Su, H., Qi, C. R., Li, Y., & Guibas, L. ICCV 2015
Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model



Render&compare for 6D pose estimation

Li, Y., Wang, G., Ji, X., Xiang, Y., & Fox, D. . DeepIM: Deep iterative matching for 6d pose estimation. ECCV 2018



Training data
• DeepIM

• BOP challenge on
6D pose estimation
2020



Using realistic game engines

Playing for Data: Ground Truth from Computer Games 
S. Richter, V. Vineet, S. Roth, V. Koltun, ECCV 2016



Photometric stereo
Approach Data

Random shape, camera, material,
illumination.
Rendered on the fly.

Setting

e.g. Aggregating Spatial and Photometric Context for Photometric Stereo, D. Honzátko, EPFL 2024



Category level correspondences

I. Rocco, R. Arandjelović and J. Sivic 
Convolutional neural network architecture for geometric matching, 
CVPR 2017



Hard annotations: category level correspondences

I. Rocco, R. Arandjelović and J. Sivic 
Convolutional neural network architecture for geometric matching, 
CVPR 2017



I. Rocco, R. Arandjelović and J. Sivic 
Convolutional neural network architecture for geometric matching, CVPR 2017



Hard annotations: category level correspondences

I. Rocco, R. Arandjelović and J. Sivic 
Convolutional neural network architecture for geometric matching, 
CVPR 2017
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Domain gap / transfer

• Domain gap is a common and important issue, e.g. training on IN 
testing on Pascal, dataset biais

• Relation to overfitting/generalization/robustness

• Very clear when training data is synthetic

Domain adaptation

• Not specific to CNNs

• Supervised / unsupervised

• Find a mapping / find a common space



Dataset Biais

A. Torralba and A. A. Efros.
Unbiased look at dataset bias. 
CVPR 2011



Domain adaptation
• Examples of standard datasets

Image from : Chang, W. G., You, T., Seo, S., Kwak, S., & Han, B. 
Domain-Specific Batch Normalization for Unsupervised Domain Adaptation. 
CVPR 2019



Domain adaptation

Koh, Pang Wei, et al. "Wilds: A benchmark of in-the-wild distribution shifts.” ICML 2021.



Example: Watermark recognition

150



Domain Adaptation

CNN

High dimensional 
feature space



Domain Adaptation

CNN

Solution:
learn a transformation/CNN
that match the statistics
/ align the matching features



Learning joint embedding: example of 3D 
models and real images

Li, Y., Su, H., Qi, C. R., Fish, N., Cohen-Or, D., & Guibas, L. J. TOG 2015 
Joint embeddings of shapes and images via CNN image purification.



Li, Y., Su, H., Qi, C. R., Fish, N., Cohen-Or, D., & Guibas, L. J. TOG 2015 
Joint embeddings of shapes and images via CNN image purification.

Learning joint embedding: example of 3D 
models and real images



Learning adaptation: e.g. 3D instance detection



Adapting statistics using adversarial training

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., ... & Lempitsky, V. 
Domain-adversarial training of neural networks.
JMLR 2016



Cycles for domain adaptation

Hoffman, J., Tzeng, E., Park, T., Zhu, J. Y., Isola, P., Saenko, K., ... & Darrell, T. 
Cycada: Cycle-consistent adversarial domain adaptation.
ICLR 2018
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Cycle-consistency for dense category-level 
correspondences

Learning Dense Correspondence via 3D-guided Cycle Consistency 
T Zhou, P Krähenbühl, M Aubry, Q Huang, AA Efros, CVPR 2016



Dense category-level correspondences

Learning Dense Correspondence via 3D-guided Cycle Consistency 
T Zhou, P Krähenbühl, M Aubry, Q Huang, AA Efros, CVPR 2016



Dense category-level correspondences

Learning Dense Correspondence via 3D-guided Cycle Consistency 
T Zhou, P Krähenbühl, M Aubry, Q Huang, AA Efros, CVPR 2016
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