Deep Learning for 3D data

Mathieu Aubry

Imagine – LIGM, Ecole des Ponts ParisTech (ENPC)

A few words about my research

Current: Unsupervised image analysis, applications to historical data or Earth imagery

Past: Deep 3D model generation/analysis.

Outline: Deep learning and 3D data

Important milestones:

- 1. Classification and Segmentation
- 2. Matching / Alignment
- 3. Generation and single view reconstruction

Recent works I am excited about:

- 4. Structured generation
- 5. Unsupervised single view reconstruction

Learning with synthetic data

2015-2019

Mostly my students 2020-2024

Outline: Deep learning and 3D data

Important milestones:

- **1.** Classification and Segmentation
- 2. Matching / Alignment
- 3. Generation and single view reconstruction

Recent works I am excited about:

- 4. Structured generation
- 5. Unsupervised single view reconstruction

Learning with synthetic data

Key issue: 3D representation

- 2D views / Depth maps
- Voxels
- Points
- Meshes
- Parametric surface
- Implicit surface
- "Procedural"

Key issue: 3D representation

- 2D views / Depth maps
- Voxels
- Points
- Meshes
- Parametric surface
- Implicit surface
- "Procedural"

3D category recognition from rendered views

Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. ICCV 2015 Multi-view Convolutional Neural Networks for 3D Shape Recognition.

Semantic segmentation from rendered views

A. Boulch, B. L. Saux, and N. Audebert. Unstructured point cloud semantic labeling using deep segmentation networks. In Eurographics Workshop on 3D Object Retrieval 2017

Key issue: 3D representation

- 2D views / Depth maps
- Voxels
- Points
- Meshes
- Parametric surface
- Implicit surface
- "Procedural"

3D recognition from voxels

Wu, Z., Song, S., Khosla, A., Tang, X., & Xiao, J. CVPR 2015 3d shapenets: A deep representation for volumetric shapes.

OctNet

- Voxel representation tend to be costly:
 - -> tree based representation

Riegler, G., Osman Ulusoy, A., & Geiger, A. Octnet: Learning deep 3d representations at high resolutions. CVPR 2017

Key issue: 3D representation

- 2D views / Depth maps
- Voxels
- Points
- Meshes
- Parametric surface
- Implicit surface
- "Procedural"

3D recognition from point clouds

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CR Qi, H Su, K Mo, LJ Guibas, CVPR 2017

PointNet

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, Qi et al. CVPR (2017)

PointNet

Classification Network

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CR Qi, H Su, K Mo, LJ Guibas, CVPR 2017

Qi, C. R., Yi, L., Su, H., & Guibas, L. J.

Pointnet++: Deep hierarchical feature learning on point sets in a metric space. NeurIPS 2017

Superpoint Graphs

(a) RGB point cloud

(b) Geometric partition

Landrieu, L., & Simonovsky, M. Large-scale point cloud semantic segmentation with superpoint graphs CVPR 2018

(c) Superpoint graph

(d) Semantic segmentation

The GRU take as input the previous hidden state and a message computed as a weighted average of its neighbors hidden states. The weights are computed from a small number of attributes using an MLP

M. Simonovsky and N. Komodakis. Dynamic edgeconditioned filters in convolutional neural networks on graphs. In CVPR, 2017

Key issue: 3D representation

- 2D views / Depth maps
- Voxels
- Points
- Meshes
- Parametric surface
- Implicit surface
- "Procedural"

Outline: Deep learning and 3D data

Important milestones:

- 1. Classification and Segmentation
- 2. Matching / Alignment
- 3. Generation and single view reconstruction

Recent works I am excited about:

- 4. Structured generation
- 5. Unsupervised single view reconstruction

Learning with synthetic data

Non-rigid registration

- Evaluation?
 - Synthetic data: SHREC / TOSCA datasets

scaling

Non-rigid registration

- Evaluation?
 - Synthetic data: SHREC / TOSCA datasets
 - Real data: FAUST dataset

3D local descriptors with spectral CNNs

Geodesic convolutional neural networks on riemannian manifolds, J. Masci, D. Boscaini, M. Bronstein, P. Vandergheynst, ICCV workshops 2015

3D local descriptors with spectral CNNs

Geodesic convolutional neural networks on riemannian manifolds, J. Masci, D. Boscaini, M. Bronstein, P. Vandergheynst, ICCV workshops 2015

Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., & Aubry, M. 3d-coded: 3d correspondences by deep deformation ECCV 2018

Key idea: deformation

Key idea: deformation

Losses

- Let's consider a source point cloud $\mathcal{X} = \{x_1, ..., x_n\}$ and a target point cloud $\mathcal{Y} = \{y_1, ..., y_n\}$
- Supervised case:

$$L(\mathcal{X}, \mathcal{Y}) = \sum_{i=1}^{N} ||x_i - y_i||^2$$

n

• Unsupervised case:

Chamfer distance:

$$L(\mathcal{X}, \mathcal{Y}) = \sum_{i=1}^{n} \min_{j} ||x_i - y_j||^2 + \sum_{j=1}^{n} \min_{i} ||x_i - y_j||^2$$

Earth mover distance:
$$L(\mathcal{X}, \mathcal{Y}) = \min_{\pi} \sum_{i=1}^{n} \|x_i - y_{\pi(i)}\|^2$$

Results

Results

The nearest neighbors are likely to be poor

Refinement.

Deformed Template

Optimized reconstruction

w/o template + w/ cycle consistency

T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, M. Aubry, Unsupervised cycle-consistent deformation for shape matching, SGP 2019

Key issue: 3D representation

- 2D views / Depth maps
- Voxels
- Points
- Meshes
- Parametric surface
- Implicit surface
- "Procedural"

Outline: Deep learning and 3D data

Important milestones:

- 1. Classification and Segmentation
- 2. Matching / Alignment
- 3. Generation and single view reconstruction

Recent works I am excited about:

- 4. Structured generation
- 5. Unsupervised single view reconstruction

Learning with synthetic data

Voxels

Choy, C. B., Xu, D., Gwak, J., Chen, K., & Savarese, S.

3D-R2N2: A unified approach for single and multi-view 3d object reconstruction. ECCV 2016

Points

Fan, H., Su, H., & Guibas, L. J. A point set generation network for 3d object reconstruction from a single image, CVPR 2017

Points

Fan, H., Su, H., & Guibas, L. J. A point set generation network for 3d object reconstruction from a single image, CVPR 2017

Points

Fan, H., Su, H., & Guibas, L. J. A point set generation network for 3d object reconstruction from a single image, CVPR 2017

Parametric surface: Deform a unit square

Parametric surface: Deform a unit square

Learnt simply by sampling many points and minimizing Chamfer distance

T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, M. Aubry, AtlasNet: A papier-mâché approach to learning 3d surface generation, CVPR. 2018

Parametric surface

Parametric volume [Mescheder2019, Park2019, Chen2019]

Park, J. J., Florence, P., Straub, J., Newcombe, R., & Lovegrove, S.
Deepsdf: Learning continuous signed distance functions for shape representation Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., & Geiger, A.
Occupancy networks: Learning 3d reconstruction in function space.
Chen, Z., & Zhang, H.
Learning implicit fields for generative shape modeling.

Learning **implicit fields** for generative shape modeling.

Summary: 3D shape representations for deep generation

Parametric scene / Nerf [Mildenhall20]

Input: a set of calibrated images

Output: rendering from any viewpoint (from a scene model)

Parametric scene / Nerf [Mildenhall20]

Outline: Deep learning and 3D data

Important milestones:

- 1. Classification and Segmentation
- 2. Matching / Alignment
- 3. Generation and single view reconstruction

Recent works I am excited about:

4. Structured generation

5. Unsupervised single view reconstruction

Learning with synthetic data

Key issue: 3D representation

- 2D views / Depth maps
- Voxels
- Points
- Meshes
- Parametric surface
- Implicit surface
- "Procedural"

Learning to compose primitives

Learning Shape Abstractions by Assembling Volumetric Primitives, Shubham Tulsiani , Hao Su, Leonidas J. Guibas, Alexei A. Efros, Jitendra Malik, CVPR 2017 Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids, Despoina Paschalidou, Ali Osman Ulusoy, Andreas Geiger, CVPR 2018

AtlasNet

MLP 1 Latent shape representation MLP 2

Learning elementary structures: Point Learning (AtlasNet v2)

Learning elementary structures: Point Learning (AtlasNet v2)

Latent shape representation

Learning elementary structures

Results on Shapenet planes

Learnable Earth Parser

+ losses derived from a probabilistic scene model, developped in the paper

Learnable Earth Parser: Discovering 3D Prototypes in Aerial Scans R. Loiseau, E. Vincent, M. Aubry, L. Landrieu CVPR 2024

Name	Surface in km ²	$\# \text{ points} \times 10^6$	annotation ratio in %	num. of classes
Crop fields	1.1	19.7	77.4	2
Forest	1.1	46.7	97.8	2
Greenhouses	0.1	1.3	95.6	3
Marina	0.1	0.5	92.7	2
Power plant	0.2	8.6	78.4	4
Urban	1.1	15.7	95.9	3
Windturbines	4.2	5.6	_	_
Total	7.7	98.3	89.6	_

Data: LidarHD

Semantic segmentation results

Instance segmenation results

Structured generation for image analysis

Unsupervised Layered Image Decomposition into Object Prototypes, T. Monnier, E. Vincent, J. Ponce, M. Aubry ICCV 2021

Multi-object discovery results Discovered sprites

Object discovery on Instagram

#santaphoto

Text lines, HTR and paleography

The Learnable Typewriter A Generative Approach to Text Line Analysis Y. Siglidis, N. Gonthier, J. Gaubil, T. Monnier, M. Aubry, ICDAR 2024 (IAPR best paper award)

Differentiable Blocks World

1) Input = set of calibrated images

2) Optimizing primitives by rendering

3) 3D decomposition

Differentiable Blocks World: Qualitative 3D Decomposition by Rendering Primitives T. Monnier, J. Austin, A. Kanazawa, A. Efros, M. Aubry NeurIPS 2023
Approach

Optimization process

Qualitative results

Applications

Gaussian splatting (Kerbl et al. 2023)

Outline: Deep learning and 3D data

Important milestones:

- 1. Classification and Segmentation
- 2. Matching / Alignment
- 3. Generation and single view reconstruction

Recent works I am excited about:

- 4. Structured generation
- 5. Unsupervised single view reconstruction

Learning with synthetic data

Goal → learn w/o supervision to reconstruct 3D objects from single views

Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency T. Monnier, M. Fisher, A. Efros, M. Aubry ECCV 2022

Single-View Reconstruction (SVR)

Method	Supervision	Synthetic data	Real data	Output
[6, 12, 30, 45]*	3 D	ShapeNet	×	3D
[26, 52]*	MV, C, S	ShapeNet	×	3D
$[5, 28, 36, 43]^{\bigstar}$	MV, C, S	ShapeNet	×	3D, T
[57]	MV, C, S	×	Bird, Car, Horse	3D, T
[20,41]*	\mathbf{MV}, \mathbf{S}	ShapeNet	×	$3D, \mathbb{C}$
$[23,43,44]^{\bigstar}$	\mathbf{CK}, \mathbf{S}	×	Pascal	3D
[5, 22]	$\mathbf{CK}, \mathbf{S}, \mathbf{P}(\dagger)$	×	Bird, Car, Plane	3D, T
[16]	$\mathbf{CK}, \mathbf{P}(\dagger)$	ShapeNet	Bird, Car	3D, T
[10]	$\mathbf{S}, \mathbf{P}(\diamondsuit, \dagger)$	×	Bird, Car, Moto, Shoe	3D, T, C
[42]	$\mathbf{S}, \mathbf{P}(\diamondsuit, \dagger)$	×	Animal, Car, Plane	3D, T, C
[27]	$\mathbf{S}, \mathbf{P}(\leftrightarrow, \dagger)$	×	Animal, Car, Moto	3D, T, C
[48]	$\mathbf{S}, \mathbf{P}(\ddagger)$	×	Vase	3D, T, C
[49]	$\mathbf{P}(oxtimes, \preccurlyeq, \dagger)$	×	Face	$\mathbf{D}, \mathbf{T}, \mathbf{C}$
[15]	$\mathbf{P}(\boxtimes, \varnothing)$	Toy ShapeNet	×	3D, <mark>C</mark>
Ours	None	ShapeNet	Animal, Car, Moto	3D, T , C

Legend: Multi-Views, Camera, Camera estimate or Keypoints, Silhouette, Prior (\diamond template shape, \dagger symmetry, \ddagger solid of revolution, \leftrightarrow semantic consistency, \boxtimes no/limited background, \triangleleft frontal view, \varnothing no texture), Depth, Texture. **Current trend** \rightarrow remove supervision from SVR pipelines

Why? → to learn 3D from raw 2D images « for free »

Our work

- \rightarrow w/o hypotheses of prior works
- → diverse shapes (ShapeNet)
- \rightarrow high-quality results on real images

Disclaimer

 \rightarrow we still use <u>categorical</u> images

Structured autoencoding into explicit factors: shape, texture, pose, background

(analysis-by-synthesis fashion)

We leverage the consistency across different instances to remove supervision & priors

Structured autoencoding

Shape deformation

Texturing

Affine transformation

Rendering with background

Structured autoencoding - issue

Task is highly unconstrained w/o supervision & priors.

1. Degenerate background Input Rec. Input View 1 View 2 3D rec. \mathbf{z}_{bg} , b_{θ} e_{θ}

Two data-driven approaches leveraging cross-instance consistency:

- \rightarrow progressive conditioning (training procedure)
- \rightarrow Neighbor reconstruction (training loss)

Progressive conditioning (PC)

Cross-instance consistency

→ instances with similar shapes and textures exist!

Progressive conditioning

 \rightarrow gradually specialize from category to instances

similar

shape

similar

texture

- → progressively allow more variability by increasing the latent space dimension
- \rightarrow curriculum learning spirit

Neighbor reconstruction

Neighbor reconstruction loss

→ force consistency among instances w/ similar shapes & textures

→ swapping characteritics should give similar reconstructions

 \rightarrow like a multi-view supervision w/o having access to multi-views

Results - CompCars

Ablation study

Input

Full model

w/o PC

w/o $\mathcal{L}_{\mathrm{swap}}$

Results - ShapeNet

Results - Motorbikes

Outline: Deep learning and 3D data

Important milestones:

- 1. Classification and Segmentation
- 2. Matching / Alignment
- 3. Generation and single view reconstruction

Recent works I am excited about:

- 4. Structured generation
- 5. Unsupervised single view reconstruction

Learning with synthetic data

Learning from synthetic data

- Very appealing:
 - Annotations (almost) free
 - Can include things that are very hard to annotate (e.g. illumination, dense labels)
 - Can simulate rare situation (e.g. accidents)
- Challenge: domain gap will the model trained on synthetic data work as well on real data?
- Strategies:
 - Realistic data
 - Domain adaptation
 - Domain randomization
 - Other

Outline: Deep learning and 3D data

Important milestones:

- 1. Classification and Segmentation
- 2. Matching / Alignment
- 3. Generation and single view reconstruction

Recent works I am excited about:

- 4. Structured generation
- 5. Unsupervised single view reconstruction

Learning with synthetic data

- Domain randomization
- Realistic data
- Domain adaptation

Domain randomization: predict 2D position

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. Domain randomization for transferring deep neural networks from simulation to the real world IROS 2017

Domain randomization: Learning relative position

Virtual Training for a Real Application: Accurate Object-Robot Relative Localization without Calibration V. Loing, R. Marlet, M. Aubry, IJCV 2018

S. Zagoruyko, Y. Labbé, I. Kalevatykh, I. Laptev, J. Carpentier, M. Aubry and J. Sivic RSS workshop 2019, ArXiv

Monte-Carlo Tree Search for Efficient Visually Guided Rearrangement Planning

Vision part extending

Virtual training for a real application: Accurate object-robot relative localization without calibration V. Loing, R. Marlet, Mathieu AUbry IJCV 2018

CosyPose: Multi-views, multi-object

• Single view similar to deepIM (see later) with randomized training data

Multi-view multi-object 6D pose estimation via robust scene consistency optimization Y. Labbé, J. Carpentier, M. Aubry, J.Sivic, ECCV 2020

CosyPose: Multi-views, multi-object

Multi-view multi-object 6D pose estimation via robust scene consistency optimization Y. Labbé, J. Carpentier, M. Aubry, J.Sivic, ECCV 2020

Single-view robot pose and joint angle estimation via render & compare

Extending the render and compare approach of Multi-view multi-object 6D pose estimation via robust scene consistency optimization Y. Labbé, J. Carpentier, M. Aubry, J.Sivic, ECCV 2020 to articulated objects

Domain randomization: Learning to act

Learning strategies:

- Imitation
- RL

RL from synthetic data to real world

Sadeghi, F., & Levine, S. (2016). Cad2rl: Real single-image flight without a single real image.

Genie 2

Realism and diversity, based on diffusion, aimed at training agents

Last week, Google : https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/

Navigation World Models

(b) evaluate trajectories for navigation planning by synthesizing videos (known environments)

Bar, A., Zhou, G., Tran, D., Darrell, T., & LeCun, Y. Navigation World Models. *arXiv last week, Meta*

Domain randomization: Optical flow

For historical data

Illustration detection

docExtractor: An off-the-shelf historical document element extraction T. Monnier, M. Aubry, *ICFHR 2020*

Copy retrieval

Learning Co-segmentation by Segment Swapping for Retrieval and Discovery X. Shen, A. Efros, A. Joulin, M. Aubry, *CVPR 2022 workshops*

• Diagrams vectorization

Historical Astronomical Diagrams Decomposition in Geometric Primitives

S. Kalleli, S. Trigg, S. Albouy, M. Husson, M Aubry, *ICDAR 2024*

• Text recognition (upcoming)

General Detection-based Text Line Recognition R. Baena, S. Kalleli, M. Aubry, *NeurIPS 2024*

Synthetic data

Domain randomization: Co-segmentation

• Goal: identify reccurent objects and their correspondences

Learning Co-segmentation by Segment Swapping for Retrieval and Discovery Xi Shen, Alexei Efros, Armand Joulin, Mathieu Aubry, CVPRw 2022
Architecture

Learning Co-segmentation by Segment Swapping for Retrieval and Discovery Xi Shen, Alexei Efros, Armand Joulin, Mathieu Aubry, CVPRw 2022

Matching results

Learning Co-segmentation by Segment Swapping for Retrieval and Discovery Xi Shen, Alexei Efros, Armand Joulin, Mathieu Aubry, CVPRw 2022

Goes beyond artwork analysis

Exemplar CNN

Idea:

- 1. learn feature with fake classes based on 1 image + augmentations
- 2. Use the features for another task

This type of extreme data augmentation is important in most self-supervised approaches

Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springenberg, Martin Riedmiller, Thomas Brox NIPS 2014

Outline: Deep learning and 3D data

Important milestones:

- 1. Classification and Segmentation
- 2. Matching / Alignment
- 3. Generation and single view reconstruction

Recent works I am excited about:

- 4. Structured generation
- 5. Unsupervised single view reconstruction

Learning with synthetic data

- Domain randomization
- Realistic data
- Domain adaptation

Category detection

X. Peng, B. Sun, K. Ali, K. Saenko, ICCV 2015 Learning Deep Object Detectors from 3D Models

Pepik, B., Benenson, R., Ritschel, T., & Schiele, B. GCPR 2015 What Is Holding Back Convnets for Detection?.

Importance of realism for category detection

	RR-RR				W-RR			W-UG			RR-UG				RG-UG				RG-RR			
BG	Real RGB				White			White			Real RGB				Real Gray				Real Gray			
TX		Real RGB			Real RGB			Unif. Gray			Unif. Gray			-	Unif. Gray				Real RGB			
IMGN	ET	aero	bike	bird	boat	botl	bus	car	cat	chr	cow	tab	dog	hse	mbik	pers	plt	shp	sofa	trn	tv	mAP
RR-R	R	34.3	34.6	19.9	17.1	10.8	30.0	33.0	18.4	9.7	13.7	1.4	17.6	17.7	34.7	13.9	11.8	15.2	12.7	6.3	26.0	18.9
W-R	R	35.9	23.3	16.9	15.0	11.8	24.9	35.2	20.9	11.2	15.5	0.1	15.9	15.6	28.7	13.4	8.9	3.7	10.3	0.6	28.8	16.8
W-U	G	38.6	32.5	18.7	14.1	9.7	21.2	36.0	9.9	11.3	13.6	0.9	15.7	15.5	32.3	15.9	9.9	9.7	19.9	0.1	17.4	17.1
RR-U	IG	26.4	36.3	9.5	9.6	9.4	5.8	24.9	0.4	1.2	12.8	4.7	14.4	9.2	28.8	11.7	9.6	0.7	4.9	0.1	12.2	11.6
RG-U	JG	32.7	34.5	20.2	14.6	9.4	7.5	30.1	12.1	2.3	14.6	9.3	15.2	11.2	30.2	12.3	11.4	2.2	9.9	0.5	13.1	14.7
RG-R	R	26.4	38.2	21.0	15.4	12.1	26.7	34.5	18.0	8.8	16.4	0.4	17.0	20.9	32.1	11.0	14.7	18.4	14.8	6.7	32.0	19.3

X. Peng, B. Sun, K. Ali, K. Saenko, ICCV 2015 Learning Deep Object Detectors from 3D Models

(1D) Pose estimation

Su, H., Qi, C. R., Li, Y., & Guibas, L. ICCV 2015

Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model

Render&compare for 6D pose estimation

Li, Y., Wang, G., Ji, X., Xiang, Y., & Fox, D. . DeepIM: Deep iterative matching for 6d pose estimation. ECCV 2018

Training data

• DeepIM

(c) Synthetic Data for YCB-Video

Commonly used "render & paste" synthetic training images

BOP challenge on
 6D pose estimation
 2020

Photorealistic training images rendered by BlenderProc4BOP [7,6]

Using realistic game engines

Playing for Data: Ground Truth from Computer Games S. Richter, V. Vineet, S. Roth, V. Koltun, ECCV 2016

Photometric stereo

Setting

Approach

Data

Random shape, camera, material, illumination. Rendered on the fly.

e.g. Aggregating Spatial and Photometric Context for Photometric Stereo, D. Honzátko, EPFL 2024

Category level correspondences

I. Rocco, R. Arandjelović and J. Sivic Convolutional neural network architecture for geometric matching, CVPR 2017

Hard annotations: category level correspondences

CVPR 2017

I. Rocco, R. Arandjelović and J. Sivic

Convolutional neural network architecture for geometric matching, CVPR 2017

Hard annotations: category level correspondences

I. Rocco, R. Arandjelović and J. Sivic Convolutional neural network architecture for geometric matching, CVPR 2017

Outline: Deep learning and 3D data

Important milestones:

- 1. Classification and Segmentation
- 2. Matching / Alignment
- 3. Generation and single view reconstruction

Recent works I am excited about:

- 4. Structured generation
- 5. Unsupervised single view reconstruction

Learning with synthetic data

- Domain randomization
- Realistic data
- Domain adaptation

Domain gap / transfer

- Domain gap is a common and important issue, e.g. training on IN testing on Pascal, dataset biais
- Relation to overfitting/generalization/robustness
- Very clear when training data is synthetic

Domain adaptation

- Not specific to CNNs
- Supervised / unsupervised
- Find a mapping / find a common space

Dataset Biais

SUN cars

Caltech101 cars

ImageNet cars

LabelMe cars

A. Torralba and A. A. Efros.Unbiased look at dataset bias.CVPR 2011

Domain adaptation

• Examples of standard datasets

Image from : Chang, W. G., You, T., Seo, S., Kwak, S., & Han, B. Domain-Specific Batch Normalization for Unsupervised Domain Adaptation. CVPR 2019

Domain adaptation

		Dor	main generalizati	on	Subpopulation shift	Domain generalization + subpopulation shift					
Dataset	iWildCam	Camelyon17	RxRx1	OGB-MolPCBA	GlobalWheat	CivilComments	FMoW	PovertyMap	Amazon	Py150	
Input (x)	camera trap photo	tissue slide	cell image	molecular graph	wheat image	online comment	satellite image	satellite image	product review	code	
Prediction (y)	animal species	tumor	perturbed gene	bioassays v	wheat head bbo	x toxicity	land use	asset wealth	sentiment	autocomplete	
Domain (d)	camera	hospital	batch	scaffold	location, time	demographic	time, region	country, rural-urb	oan user	git repository	
# domains	323	5	51	120,084	47	16	16 x 5	23 x 2	2,586	8,421	
# examples	203,029	455,954	125,510	437,929	6,515	448,000	523,846	19,669	539,502	150,000	
Train example						What do Black and LGBT people have to do with bicycle licensing?			Overall a solid package that has a good quality of construction for the price.	<pre>import numpy as np norm=np</pre>	
Test example						As a Christian, I will not be patronizing any of those businesses.			I *loved* my French press, it's so perfect and came with all this fun stuff!	<pre>import subprocess as sp p=sp.Popen() stdout=p</pre>	
Adapted from	Beery et al. 2020	Bandi et al. 2018	Taylor et al. 2019	Hu et al. 2020	David et al. 2021	Borkan et al. 2019	Christie et al. 2018	Yeh et al. 2020	Ni et al. 2019	Raychev et al. 2016	

Koh, Pang Wei, et al. "Wilds: A benchmark of in-the-wild distribution shifts." ICML 2021.

Example: Watermark recognition

Domain Adaptation

Domain Adaptation

Solution: learn a transformation/CNN that match the statistics

Learning joint embedding: example of 3D models and real images

Li, Y., Su, H., Qi, C. R., Fish, N., Cohen-Or, D., & Guibas, L. J. TOG 2015 Joint embeddings of shapes and images via CNN image purification.

Learning joint embedding: example of 3D models and real images

Li, Y., Su, H., Qi, C. R., Fish, N., Cohen-Or, D., & Guibas, L. J. TOG 2015 Joint embeddings of shapes and images via CNN image purification.

Learning adaptation: e.g. 3D instance detection

Adapting statistics using adversarial training

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., ... & Lempitsky, V. Domain-adversarial training of neural networks. *JMLR 2016*

Cycles for domain adaptation

Hoffman, J., Tzeng, E., Park, T., Zhu, J. Y., Isola, P., Saenko, K., ... & Darrell, T. Cycada: Cycle-consistent adversarial domain adaptation. *ICLR 2018*

Outline: Deep learning and 3D data

Important milestones:

- 1. Classification and Segmentation
- 2. Matching / Alignment
- 3. Generation and single view reconstruction

Recent works I am excited about:

- 4. Structured generation
- 5. Unsupervised single view reconstruction

Learning with synthetic data

- Domain randomization
- Realistic data
- Domain adaptation
- Other

Cycle-consistency for dense category-level correspondences

Learning Dense Correspondence via 3D-guided Cycle Consistency T Zhou, P Krähenbühl, M Aubry, Q Huang, AA Efros, CVPR 2016

Dense category-level correspondences

Learning Dense Correspondence via 3D-guided Cycle Consistency T Zhou, P Krähenbühl, M Aubry, Q Huang, AA Efros, CVPR 2016

Dense category-level correspondences

Learning Dense Correspondence via 3D-guided Cycle Consistency T Zhou, P Krähenbühl, M Aubry, Q Huang, AA Efros, CVPR 2016

Outline: Deep learning and 3D data

Important milestones:

- 1. Classification and Segmentation
- 2. Matching / Alignment
- 3. Generation and single view reconstruction

Recent works I am excited about:

- 4. Structured generation
- 5. Unsupervised single view reconstruction

Learning with synthetic data

- Domain randomization
- Realistic data
- Domain adaptation